972 resultados para Field video recording
Resumo:
In the static field limit, the vibrational hyperpolarizability consists of two contributions due to: (1) the shift in the equilibrium geometry (known as nuclear relaxation), and (2) the change in the shape of the potential energy surface (known as curvature). Simple finite field methods have previously been developed for evaluating these static field contributions and also for determining the effect of nuclear relaxation on dynamic vibrational hyperpolarizabilities in the infinite frequency approximation. In this paper the finite field approach is extended to include, within the infinite frequency approximation, the effect of curvature on the major dynamic nonlinear optical processes
Resumo:
An implicitly parallel method for integral-block driven restricted active space self-consistent field (RASSCF) algorithms is presented. The approach is based on a model space representation of the RAS active orbitals with an efficient expansion of the model subspaces. The applicability of the method is demonstrated with a RASSCF investigation of the first two excited states of indole
Resumo:
In the finite field (FF) treatment of vibrational polarizabilities and hyperpolarizabilities, the field-free Eckart conditions must be enforced in order to prevent molecular reorientation during geometry optimization. These conditions are implemented for the first time. Our procedure facilities identification of field-induced internal coordinates that make the major contribution to the vibrational properties. Using only two of these coordinates, quantitative accuracy for nuclear relaxation polarizabilities and hyperpolarizabilities is achieved in π-conjugated systems. From these two coordinates a single most efficient natural conjugation coordinate (NCC) can be extracted. The limitations of this one coordinate approach are discussed. It is shown that the Eckart conditions can lead to an isotope effect that is comparable to the isotope effect on zero-point vibrational averaging, but with a different mass-dependence
Resumo:
An analytical set of field-induced coordinates is defined and is used to show that the vibrational degrees of freedom required to completely describe nuclear relaxation polarizabilities and hyperpolarizabilities is reduced from 3N-6 to a relatively small number. As this number does not depend upon the size of the molecule, the process provides computational advantages. A method is provided to separate anharmonic contributions from harmonic contributions as well as effective mechanical from electrical anharmonicity. The procedures are illustrated by Hartree-Fock calculations, indicating that anharmonicity can be very important
Resumo:
Three conjugated organic molecules that span a range of polarity and valence-bond/charge transfer characteristics were studied. It was found that dispersion can be insignificant, and that adequate treatment can be achieved with frequency-dependent field-induced vibrational coordinates (FD-FICs)
Resumo:
Two common methods of accounting for electric-field-induced perturbations to molecular vibration are analyzed and compared. The first method is based on a perturbation-theoretic treatment and the second on a finite-field treatment. The relationship between the two, which is not immediately apparent, is made by developing an algebraic formalism for the latter. Some of the higher-order terms in this development are documented here for the first time. As well as considering vibrational dipole polarizabilities and hyperpolarizabilities, we also make mention of the vibrational Stark effec
Resumo:
Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed
Resumo:
The project aims at advancing the state of the art in the use of context information for classification of image and video data. The use of context in the classification of images has been showed of great importance to improve the performance of actual object recognition systems. In our project we proposed the concept of Multi-scale Feature Labels as a general and compact method to exploit the local and global context. The feature extraction from the discriminative probability or classification confidence label field is of great novelty. Moreover the use of a multi-scale representation of the feature labels lead to a compact and efficient description of the context. The goal of the project has been also to provide a general-purpose method and prove its suitability in different image/video analysis problem. The two-year project generated 5 journal publications (plus 2 under submission), 10 conference publications (plus 2 under submission) and one patent (plus 1 pending). Of these publications, a relevant number make use of the main result of this project to improve the results in detection and/or segmentation of objects.
Resumo:
Lack of physical activity can cause health problems and diminish organizational productivity. We conducted a 12-months long field experiment in a financial services company to study the effects of slow-moving treadmills outfitted for office work on employee productivity and health. 43 sedentary volunteers were assigned randomly to two groups to receive treadmill workstations 7 months apart. Employees could opt at will for standard chair-desk arrangement. Biometric measurements were taken quarterly and weekly online performance surveys were administered to study participants and to more than 200 non-participants and their supervisors.In this study we explore three questions concerning the effects of the introduction of treadmills in the workplace. (1) Does it improve overall physical activity? (2) Does it improve health measures? (3) Does it improve performance? The answers are as follows. (1) Yes (net effect of almost half an hour a day). (2) Yes (small gains, one minor decline). (3) No and yes (initial decline followed by increase to recover to initial level within one year) – based on weekly employee self reports.
Resumo:
This research involved two studies: one to determine the local geoid to obtain mean sea level elevation from a global positioning system (GPS) to an accuracy of ±2 cm, and the other to determine the location of roadside features such as mile posts and stop signs for safety studies, geographic information systems (GIS), and maintenance applications, from video imageries collected by a van traveling at traffic speed.
Resumo:
BACKGROUND: The role of video-assisted thoracoscopic surgery in the treatment of pleural empyema was assessed in a consecutive series of 328 patients between 1992 and 2002. An analysis of the predicting factors for conversion thoracotomy in presumed stage II empyema was performed. METHODS: Empyema stage III with pleural thickening and signs of restriction on computer tomography imaging was treated by open decortication, whereas a thoracoscopic debridement was attempted in presumed stage II disease. Conversion thoracotomy was liberally used during thoracoscopy if stage III disease was found at surgery. Predictive factors for conversion thoracotomy were calculated in a multivariate analysis among several variables such as age, sex, time interval between onset of symptoms and surgery, involved microorganisms, and underlying cause of empyema. RESULTS: Of the 328 patients surgically treated for stage II and III empyema, 150 underwent primary open decortication for presumed stage III disease. One hundred seventy-eight patients with presumed stage II empyema underwent a video-assisted thoracoscopic approach. Of these 178 patients, thoracoscopic debridement was successful in 99 of 178 patients (56%), and conversion thoracotomy and open decortication was judged necessary in 79 of 178 patients (44%). The conversion thoracotomy rate was higher in parapneumonic empyema (55%) as compared with posttraumatic (32%) or postoperative (29%) empyema; however, delayed referral (p < 0.0001) and gram-negative microorganisms (p < 0.01) were the only significant predictors for conversion thoracotomy in a multivariate analysis. CONCLUSIONS: Video-assisted thoracoscopic debridement offers an elegant, minimally invasive approach in a number of patients with presumed stage II empyema. However, to achieve a high success rate with the video-assisted thoracoscopic approach, early referral of the patients to surgery is required. Conversion thoracotomy should be liberally used in case of chronicity, especially after delayed referral (> 2 weeks) and in the presence of gram-negative organisms.
Resumo:
Fiber reinforced polymer (FRP) composite materials are making an entry into the construction market in both buildings and pavements. The application to pavements so far has come in the form of joint reinforcement (dowels and tie bars). FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy-coated steel dowels for pavements. Iowa State University has completed a large amount of laboratory research to determine the diameter, spacing, and durability of FRP dowels. This report documents the performance of elliptical FRP dowels installed in a field situation. Ten joints were monitored in three consecutive test sections, for each of three dowel spacings (10, 12, and 15 inches) including one instrumented dowel in each test section. The modulus of dowel bar support was determined using falling weight deflectometer (FWD) testing and a loaded crawl truck. FWD testing was also used to determine load transfer efficiency across the joint. The long-term performance and durability of the concrete was also evaluated by monitoring faulting and joint opening measurements and performing visual distress surveys at each joint. This report also contains similar information for standard round, medium elliptical, and heavy elliptical steel dowels in a portion of the same highway. In addition, this report provides a summary of theoretical analysis used to evaluate joint differential deflection for the dowels.
Resumo:
The air void analyzer (AVA) with its independent isolation base can be used to accurately evaluate the air void system—including volume of entrained air, size of air voids, and distribution of air voids—of fresh portland cement concrete (PCC) on the jobsite. With this information, quality control adjustments in concrete batching can be made in real time to improve the air void system and thus increase freeze-thaw durability. This technology offers many advantages over current practices for evaluating air in concrete.
Resumo:
Fiber composite materials (FRP) are making an entry into the construction market in both buildings and pavements. The application to pavements comes in the form of joint reinforcement (dowels and tie bars) to date. FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy coated dowels for pavements. Iowa State University has completed a large amount of laboratory research into the determination of diameter, spacing, and durability of FRP dowels. This report documents the installation of a series of FRP elliptical-shaped dowel joints (including instrumented units) in a field situation and the beginning of a two-year study to compare laboratory results to in-service pavements. Ten joints were constructed for each of three dowel spacings of 10, 12, and 15 inches ( 254, 305, and 381 mm) with one instrumented joint in each test section. The instrumented bars will be load tested with a loaded truck and FWD testing.