955 resultados para Fermentative metabolites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

[15-(CH3)-C-13-H-2]-dihydroartemisinic acid (2a) and [15-(CH3)-H-2]-dihydroartemisinic acid (2b) have been fed via the root to intact Artemisia annua plants and their transformations studied in vivo by one-dimensional H-2 NMR spectroscopy and two-dimensional, C-13-H-2 correlation NMR spectroscopy (C-13-(2) H COSY). Labelled dihydroartemisinic acid was transformed into 16 12-carboxy-amorphane and cadinane sesquiterpenes within a few days in the aerial parts of A. annua, although transformations in the root were much slower and more limited. Fifteen of these 16 metabolites have been reported previously as natural products from A. annua. Evidence is presented that the first step in the transformation of dihydroartemisinic acid in vivo is the formation of allylic hydroperoxides by the reaction of molecular oxygen with the Delta(4,5)-double bond in this compound. The origin of all 16 secondary metabolites might then be explained by the known further reactions of such hydroperoxides. The qualitative pattern for the transformations of dihydroartemisinic acid in vivo was essentially unaltered when a comparison was made between plants, which had been kept alive and plants which were allowed to die after feeding of the labelled precursor. This, coupled with the observation that the pattern of transformations of 2 in vivo demonstrated very close parallels with the spontaneous autoxidation chemistry for 2, which we have recently demonstrated in vitro, has lead us to conclude that the main 'metabolic route' for dihydroartemisinic acid in A. annua involves its spontaneous autoxidation and the subsequent spontaneous reactions of allylic hydroperoxides which are derived from 2. There may be no need to invoke the participation of enzymes in any of the later biogenetic steps leading to all 16 of the labelled 11,13-dihydro-amorphane sesquiterpenes which are found in A. annua as natural products. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artemisinic acid labeled with both C-13 and H-2 at the 15-position has been fed to intact plants of Artemisia annua via the cut stem, and its in vivo transformations studied by 1D- and 2D-NMR spectroscopy. Seven labeled metabolites have been isolated, all of which are known as natural products from this species. The transformations of artemisinic acid-as observed both for a group of plants, which was kept alive by hydroponic administration of water and for a group, which was allowed to die by desiccation-closely paralleled those, which have been recently described for its 11,13-dihydro analog, dihydroartemisinic acid. It seems likely therefore that similar mechanisms, involving spontaneous autoxidation of the Delta(4,5) double bond in both artemisinic acid and dihydroartemisinic acid and subsequent rearrangements of the resultant allylic hydroperoxides, may be involved in the biological transformations, which are undergone by both compounds. All of the sesquiterpene metabolites, which were obtained from in vivo transformations of artemisinic acid retained their unsaturation at the 11,13-position, and there was no evidence for conversion into any 11,13-dihydro metabolite, including artemisinin, the antimalarial drug, which is produced by A. annua. This observation led to the proposal of a unified biosynthetic scheme, which accounts for the biogenesis of many of the amorphane and cadinane sesquiterpenes that have been isolated as natural products from A. annua. In this scheme, there is a bifurcation in the biosynthetic pathway starting from amorpha-4,11-diene leading to either artemisinic acid or dihydroartemisinic acid; these two committed precursors are then, respectively, the parents for the two large families of highly oxygenated 11,13-dehydro and 11,13-dihydro sesquiterpene metabolites, which are known from this species. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[15-(CH3)-C-13-H-2]-dihydro-epi-deoxyarteannuin B (4a) has been fed to intact Artemisia annua plants via the root and three labeled metabolites (17a-19a) have been identified by 1D- and 2D-NMR spectroscopies. The in vivo transformations of 4a in A. annua are proposed to involve enzymatically-mediated processes in addition to possible spontaneous autoxidation. In the hypothetical spontaneous autoxidation pathway, the tri-substituted double bond in 4a appears to have undergone 'ene-type' reaction with oxygen to form an allylic hydroperoxide, which subsequently rearranges to the allylic hydroxyl group in the metabolite 3 alpha-hydroxy-dihydro-epi-deoxyarteannuin B (17a). In the enzymatically-mediated pathways, compound 17a has then been converted to its acetyl derivative, 3 alpha-acetoxy-dihydro-epi-deoxyarteannuin B (18a), while oxidation of 4a at the 'unactivated' 9-position has yielded 9 beta-hydroxy-dihydro-epi-deoxyarteannuin B (19a). Although all of the natural products artemisinin ( 1), arteannuin K ( 7), arteannuin L ( 8), and arteannuin M ( 9) have been suggested previously as hypothetical metabolites from dihydro-epi-deoxyarteannuin B in A. annua, none were isolated in labeled form in this study. It is argued that the nature of the transformations undergone by compound 4a are more consistent with a degradative metabolism, designed to eliminate this compound from the plant, rather than with a role as a late precursor in the biosynthesis of artemisinin or other natural products from A. annua. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report herein an intramolecular Diels-Alder approach towards the construction of the macrocyclic lactone ring and the perhydrobenzofuran system of the colletofragarones, novel metabolites produced by fungi of the genus Colletotrichum that are responsible for inhibition of germination of the conidia in these species. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies are accumulating that report the neuroprotective, cardioprotective, and chemopreventive actions of dietary flavonoids. While there has been a major focus on the antioxidant properties, there is an emerging view that flavonoids, and their in vivo metabolites, do not act as conventional hydrogen-donating antioxidants but may exert modulatory actions in cells through actions at protein kinase and lipid kinase signalling pathways. Flavonoids, and more recently their metabolites, have been reported to act at phosphoinositide 3-kinase (PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), and mitogen activated protein kinase (MAP kinase) signalling cascades. Inhibitory or stimulatory actions at these pathways are likely to affect cellular function profoundly by altering the phosphorylation state of target molecules and by modulating gene expression. A clear understanding of the mechanisms of action of flavonoids, either as antioxidants or modulators of cell signalling, and the influence of their metabolism on these properties are key to the evaluation of these potent biomolecules as anticancer agents, cardioprotectants, and inhibitors of neurodegeneration (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bowel cancer is a growing malignancy, with more than a million annual cases reported worldwide. It has been suggested that there is microbial involvement in onset of the disease and that an altered composition has previously been observed in those suffering from the malignancy, compared to healthy counterparts. The use of prebiotic functional foods to modify the colonic microflora may provide a method of reducing genotoxic potential within the colon, whilst offering-Protective strategies in the form of metabolites such as butyrate. The following review highlights some of the studies that demonstrate the potentia role for prebiotics as protective factors against bowel cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing awareness of the role that the colonic microflora plays in maintaining host health within the gastrointestinal tract and systemically through the absorption of metabolites, has attracted a lot of interest, within the nutritional sciences, in developing dietary tools for controlling the colonic microflora. Among those dietary tools, prebiotics aim to improve health by stimulating numbers and/or activities of the beneficial bacteria in the gut, mainly bifidobacteria and lactobacilli. The ability of incorporating prebiotics in various food processes together with recent developments in understanding how prebiotics are metabolised by health promoting bacteria, allow us to specifically aim such dietary interventions towards selected population groups, such as infants and elderly, and disease states, such as colon cancer and irritable bowel disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing interest in the potential beneficial effects of flavonoids in the aging and diseased brain. We have investigated the potential of the flavanone hesperetin and two of its metabolites, hesperetin-7-O-beta-D-glucuronide and 5-nitro-hesperetin, to inhibit oxidative stress-induced neuronal apoptosis. Exposure of cortical neurons to hydrogen peroxide led to the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser963, the phosphorylation of c-jun N-terminal kinase and c-Jun (Ser73) and the activation of caspase 3 and caspase 9. Whilst hesperetin glucuronide failed to exert protection, both hesperetin and 5-nitro-hesperetin were effective at preventing neuronal apoptosis via a mechanism involving the activation/phosphorylation of both Akt/protein kinase B and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Protection against oxidative injury and the activation of Akt and ERK1/2 followed a bell-shaped response and was most apparent at 100 nmol/L concentrations. The activation of ERK1/2 and Akt by flavanones led to the inhibition of the pro-apoptotic proteins, apoptosis signal-regulating kinase 1, by phosphorylation at Ser83 and Bad, by phosphorylation at both Ser136 and Ser112 and to the inhibition of peroxide-induced caspase 9 and caspase 3 activation. Thus, flavanones may protect neurons against oxidative insults via the modulation of neuronal apoptotic machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular actions of genistein, and its in vivo metabolites, are believed to mediate the decreased risk of breast cancer associated with high soy consumption. The genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone (THIF), induced G2-M cell cycle arrest in T47D tumorigenic breast epithelial cells via a mechanism involving the activation of ataxia telangiectasia and Rad3-related kinase (ATR) via its phosphorylation at Ser(428). This activation of ATR appeared to result from THIF-induced increases in intracellular oxidative stress, a depletion of cellular GSH and an increase in DNA strand breakage. THIF treatment also led to an inhibition of cdc2, which was accompanied by the phosphorylation of both p53 (Ser(15)) and Chk1 (Ser(296)) and the de-activation of cdc25C phosphatase. We suggest the anti-proliferative actions of THIF may be mediated by initial oxidative DNA damage, activation of ATR and downstream regulation of the p53 and Chk1 pathways leading to cell cycle arrest in G2-M. This may represent one mechanism by which genistein exerts its cellular activity in vivo. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of CVD. However, Champagne wine has not been fully investigated for its cardioprotective potential. In order to assess whether acute and moderate Champagne wine consumption is capable of modulating vascular function, we performed a randomised, placebo-controlled, cross-over intervention trial. We show that consumption of Champagne wine, but not a control matched for alcohol, carbohydrate and fruit-derived acid content, induced an acute change in endothelium-independent vasodilatation at 4 and 8 h post-consumption. Although both Champagne wine and the control also induced an increase in endothelium-dependent vascular reactivity at 4 h, there was no significant difference between the vascular effects induced by Champagne or the control at any time point. These effects were accompanied by an acute decrease in the concentration of matrix metalloproteinase (MMP-9), a significant decrease in plasma levels of oxidising species and an increase in urinary excretion of a number of phenolic metabolites. In particular, the mean total excretion of hippuric acid, protocatechuic acid and isoferulic acid were all significantly greater following the Champagne wine intervention compared with the control intervention. Our data suggest that a daily moderate consumption of Champagne wine may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and reducing matrix metalloproteinase activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the bacterial-dependent metabolism of (-)-epicatechin and (+)-catechin using a pH-controlled, stirred, batch-culture fermentation system reflective of the distal region of the human large intestine. Incubation of (-)-epicatechin or (+)-catechin (150mg/l or 1000mg/l) with faecal bacteria, led to the generation of 5-(3,4'-dihydroxyphenyl)-gamma-valerolactone, 5-phenyl-gamma-valerolactone and phenylpropionic acid. However, the formation of these metabolites from (+)-catechin required its initial conversion to (+)-epicatechin. The metabolism of both flavanols occurred in the presence of favourable carbon sources, notably sucrose and the prebiotic fructo-oligosaccharides, indicating that bacterial utilisation of flavanols also occurs when preferential energy sources are available. (+)-Catechin incubation affected the growth of select microflora, resulting in a statistically significant increase in the growth of the Clostridium coccoides-Eubacterium rectale group, Bifidobacterium spp. and Escherichia coli, as well as a significant inhibitory effect on the growth of the C. histolyticum group. In contrast, the effect of (-)-epicatechin was less profound, only significantly increasing the growth of the C. coccoides-Eubacterium rectale group. These potential prebiotic effects for both (+)-catechin and (-)-epicatechin were most notable at the lower concentration of 150 mg/l. As both (-)-epicatechin and (+)-catechin were converted to the same metabolites, the more dramatic change in the growth of distinct microfloral populations produced by (+)-catechin incubation may be linked to the bacterial conversion of (+)-catechin to (+)-epicatechin. Together these data suggest that the consumption of flavanol-rich foods may support gut health through their ability to exert prebiotic actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soy isoflavones are thought to have a cardioprotective effect that is partly mediated by an inhibitory influence on the oxidation of low density lipoprotein (LDL). However, the aglycone forms investigated in many previous studies do not circulate in appreciable quantities because they are metabolised in the gut and liver. We investigated effects of various isoflavone metabolites, including for the first time the sulphated conjugates formed in the liver and the mucosa of the small intestine, on copper-induced LDL oxidation. The parent aglycones inhibited oxidation, although only 5% as well as quercetin. Metabolism increased or decreased their effectiveness. Equol inhibited 2.65-fold better than its parent compound daidzein and 8-hydroxydaidzein, not previously assessed, was 12.5-fold better than daidzein. However, monosulphated conjugates of genistein, daidzein and equol were much less effective and disulphates completely ineffective. Since almost all isoflavones circulate as conjugates, these data suggest that despite the increased potency produced by some metabolic changes, isoflavones may not be effective antioxidants in vivo unless they are deconjugated again.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is increasing awareness that the human gut microflora plays a critical role in maintaining host health, both within the gastrointestinal tract and, through the absorption of metabolites, systemically. An 'optimal' gut microflora establishes an efficient barrier to the invasion and colonisation of the gut by pathogenic bacteria, produces a range of metabolic substrates which in turn are utilized by the host (e.g. vitamins and short chain fatty acids) and stimulates the immune system in a non-inflammatory manner. Although little is known about the individual species of bacteria responsible for these beneficial activities, it is generally accepted that the bifidobacteria and lactobacilli constitute important components of the beneficial gut microflora. A number of diet-based microflora management tools have been developed and refined over recent decades including probiotic, prebiotic and synbiotic approaches. Each aims to stimulate numbers and/or activities of the bifidobacteria and lactobacilli within the gut microflora. The aim of this article is to examine how prebiotics are being applied to the improvement of human health and to review the scientific evidence supporting their use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human gut microbiota comprises a diverse microbial consortium closely co-evolved with the human genome and diet. The importance of the gut microbiota in regulating human health and disease has however been largely overlooked due to the inaccessibility of the intestinal habitat, the complexity of the gut microbiota itself and the fact that many of its members resist cultivation and are in fact new to science. However, with the emergence of 16S rRNA molecular tools and "post-genomics" high resolution technologies for examining microorganisms as they occur in nature without the need for prior laboratory culture, this limited view of the gut microbiota is rapidly changing. This review will discuss the application of molecular microbiological tools to study the human gut microbiota in a culture independent manner. Genomics or metagenomics approaches have a tremendous capability to generate compositional data and to measure the metabolic potential encoded by the combined genomes of the gut microbiota. Another post-genomics approach, metabonomics, has the capacity to measure the metabolic kinetic or flux of metabolites through an ecosystem at a particular point in time or over a time course. Metabonomics thus derives data on the function of the gut microbiota in situ and how it responds to different environmental stimuli e.g. substrates like prebiotics, antibiotics and other drugs and in response to disease. Recently these two culture independent, high resolution approaches have been combined into a single "transgenomic" approach which allows correlation of changes in metabolite profiles within human biofluids with microbiota compositional metagenomic data. Such approaches are providing novel insight into the composition, function and evolution of our gut microbiota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity is sweeping the westernized world at a rate which far outstrips human genomic evolution, highlighting the importance of the obesogenic environment. Diet is an important component of this obesogenic environment, with certain diets (high fat, high refined carbohydrates and sugar) predisposing to overweight. On the other hand, there are also foods shown to protect against obesity and the diseases of obesity, including whole plant foods, dairy products, dietary fibre and functional foods like probiotics, prebiotics and phytochemicals. Interestingly, many of these foods mediate their health-promoting activities through the gut microbiota. The human gut microbiota itself has recently been identified as a contributory factor in this obesogenic environment, with differences observed between lean and obese. Evidence from human studies indicates that important groups of fermentative bacteria differ in abundance between lean and obese. Recently it has been suggested that anomalous microbiota composition in infancy can predispose to overweight in later life, highlighting the important role of optimal microbiota successional development, and that – as observed in laboratory animals – the gut microbiota may contribute to the aetiology of obesity. In this review we will introduce the gut microbiota, describe its interactions with major dietary components and the host, and then go on to discuss evidence indicating that the gut microbiota may contribute to the obesogenic environment. Finally, we will explore possible strategies for modulating the composition and activity of the human gut microbiota which may impact on obesity or the metabolic diseases associated with obesity. (Nutritional Therapy & Metabolism 2009; 27: 113-33)