971 resultados para Familial melanoma
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Background: Parental obesity is a predominant risk factor for childhood obesity. Family factors including socio-economic status (SES) play a role in determining parent weight. It is essential to unpick how shared family factors impact on child weight. This study aims to investigate the association between measured parent weight status, familial socio-economic factors and the risk of childhood obesity at age 9. Methodology/Principal Findings: Cross sectional analysis of the first wave (2008) of the Growing Up in Ireland (GUI) study. GUI is a nationally representative study of 9-year-old children (N = 8,568). Schools were selected from the national total (response rate 82%) and age eligible children (response rate 57%) were invited to participate. Children and their parents had height and weight measurements taken using standard methods. Data were reweighted to account for the sampling design. Childhood overweight and obesity prevalence were calculated using International Obesity Taskforce definitions. Multinomial logistic regression examined the association between parent weight status, indicators of SES and child weight. Overall, 25% of children were either overweight (19.3%) or obese (6.6%). Parental obesity was a significant predictor of child obesity. Of children with normal weight parents, 14.4% were overweight or obese whereas 46.2% of children with obese parents were overweight or obese. Maternal education and household class were more consistently associated with a child being in a higher body mass index category than household income. Adjusted regression indicated that female gender, one parent family type, lower maternal education, lower household class and a heavier parent weight status significantly increased the odds of childhood obesity. Conclusions/Significance: Parental weight appears to be the most influential factor driving the childhood obesity epidemic in Ireland and is an independent predictor of child obesity across SES groups. Due to the high prevalence of obesity in parents and children, population based interventions are required.
Resumo:
Several studies have reported that cigarette smoking is inversely associated with the risk of melanoma. This study further tested whether incorporating genetic factors will provide another level of evaluation of mechanisms underlying the association between smoking and risk of melanoma. We investigated the association between SNPs selected from genome-wide association studies (GWAS) on smoking behaviors and risk of melanoma using 2,298 melanoma cases and 6,654 controls. Among 16 SNPs, three (rs16969968 [A], rs1051730 [A] and rs2036534 [C] in the 15q25.1 region) reached significance for association with melanoma risk in men (0.01 < = P values < = 0.02; 0.85 < = Odds Ratios (ORs) <= 1.20). There was association between the genetic scores based on the number of smoking behavior-risk alleles and melanoma risk with P-trend = 0.005 among HPFS. Further association with smoking behaviors indicating those three SNPs (rs16969968 [A], rs1051730 [A] and rs2036534 [C]) significantly associated with number of cigarettes smoked per day, CPD, with P = 0.009, 0.011 and 0.001 respectively. The SNPs rs215605 in the PDE1C gene and rs6265 in the BDNF gene significantly interacted with smoking status on melanoma risk (interaction P = 0.005 and P = 0.003 respectively). Our study suggests that smoking behavior-related SNPs are likely to play a role in melanoma development and the potential public health importance of polymorphisms in the CHRNA5-A3-B4 gene cluster. Further larger studies are warranted to validate the findings.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Melanoma is one of the most aggressive types of cancer. It originates from the transformation of melanocytes present in the epidermal/dermal junction of the human skin. It is commonly accepted that melanomagenesis is influenced by the interaction of environmental factors, genetic factors, as well as tumor-host interactions. DNA photoproducts induced by UV radiation are, in normal cells, repaired by the nucleotide excision repair (NER) pathway. The prominent role of NER in cancer resistance is well exemplified by patients with Xeroderma Pigmentosum (XP). This disease results from mutations in the components of the NER pathway, such as XPA and XPC proteins. In humans, NER pathway disruption leads to the development of skin cancers, including melanoma. Similar to humans afflicted with XP, Xpa and Xpc deficient mice show high sensibility to UV light, leading to skin cancer development, except melanoma. The Endothelin 3 (Edn3) signaling pathway is essential for proliferation, survival and migration of melanocyte precursor cells. Excessive production of Edn3 leads to the accumulation of large numbers of melanocytes in the mouse skin, where they are not normally found. In humans, Edn3 signaling pathway has also been implicated in melanoma progression and its metastatic potential. The goal of this study was the development of the first UV-induced melanoma mouse model dependent on the over-expression of Edn3 in the skin. The UV-induced melanoma mouse model reported here is distinguishable from all previous published models by two features: melanocytes are not transformed a priori and melanomagenesis arises only upon neonatal UV exposure. In this model, melanomagenesis depends on the presence of Edn3 in the skin. Disruption of the NER pathway due to the lack of Xpa or Xpc proteins was not essential for melanomagenesis; however, it enhanced melanoma penetrance and decreased melanoma latency after one single neonatal erythemal UV dose. Exposure to a second dose of UV at six weeks of age did not change time of appearance or penetrance of melanomas in this mouse model. Thus, a combination of neonatal UV exposure with excessive Edn3 in the tumor microenvironment is sufficient for melanomagenesis in mice; furthermore, NER deficiency exacerbates this process.
Resumo:
The availability of BRAF inhibitors has given metastatic melanoma patients an effective new treatment choice and molecular testing to determine the presence or absence of a BRAF codon 600 mutation is pivotal in the clinical management of these patients. This molecular test must be performed accurately and appropriately to ensure that the patient receives the most suitable treatment in a timely manner. Laboratories have introduced such testing; however, some experience low sample throughput making it critical that an external quality assurance programme is available to help promote a high standard of testing, reporting and provide an educational aspect for BRAF molecular testing. Laboratories took part in three rounds of external quality assessment (EQA) during a 12-month period giving participants a measure of the accuracy of genotyping, clinical interpretation of the result and experience in testing a range of different samples. Formalin fixed paraffin embedded tissue sections from malignant melanoma patients were distributed to participants for BRAF molecular testing. The standard of testing was generally high but distribution of a mutation other than the most common, p.(Val600Glu), highlighted concerns with detection or reporting of the presence of rarer mutations. The main issues raised in the interpretation of the results were the importance of clear unambiguous interpretation of the result tailored to the patient and the understanding that the treatment is different from that given to other stratified medicine programmes. The variability in reporting and wide range of methodologies used indicate a continuing need for EQA in this field.
Resumo:
The incidence of melanoma has increased rapidly over the past 30 years, and the disease is now the sixth most common cancer among men and women in the U.K. Many patients are diagnosed with or develop metastatic disease, and survival is substantially reduced in these patients. Mutations in the BRAF gene have been identified as key drivers of melanoma cells and are found in around 50% of cutaneous melanomas. Vemurafenib (Zelboraf(®) ; Roche Molecular Systems Inc., Pleasanton, CA, U.S.A.) is the first licensed inhibitor of mutated BRAF, and offers a new first-line option for patients with unresectable or metastatic melanoma who harbour BRAF mutations. Vemurafenib was developed in conjunction with a companion diagnostic, the cobas(®) 4800 BRAF V600 Mutation Test. The purpose of this paper is to make evidence-based recommendations to facilitate the implementation of BRAF mutation testing and targeted therapy in patients with metastatic melanoma in the U.K. The recommendations are the result of a meeting of an expert panel and have been reviewed by melanoma specialists and representatives of the National Cancer Research Network Clinical Study Group on behalf of the wider melanoma community. This article is intended to be a starting point for practical advice and recommendations, which will no doubt be updated as we gain further experience in personalizing therapy for patients with melanoma.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND: Brooke-Spiegler syndrome (BSS) is probably an underdiagnosed genodermatosis that predisposes for the development of cylindromas, spiradenomas and trichoepitheliomas mainly of the head and neck. Wide phenotypic variability regarding the number and type of lesions can be observed within a family. Mutations of the CYLD gene are identified in the vast majority of cases and play a key role in BSS pathogenesis. MAIN OBSERVATIONS: Two first degree relatives with numerous erythematous telangiectatic nodules of the scalp present for decades, with recurring tendency regardless the multiple previous excisions. Histopathological review of the lesions revealed predominantly "spiradenocylindromas" in the proband and cylindromas in her sister. The suspicion of BSS was confirmed after detection of a new nonsense germline mutation of CYLD (c.1783C>T pGln 595*) in the proband. CONCLUSIONS: BSS diagnosis can be challenging and is based on clinical-pathological correlation, positive familial association and identification of CYLD mutations. CYLD exerts antineoplastic effects by downregulating intracellular NF-κB signalling pathways. The reported mutation affecting the ubiquitin-specific protease domain leads to a truncated and catalytically inactive enzyme. Despite the expanding list of CYLD mutations no firm genotype-phenotype correlation is known so far. Early recognition and treatment of BSS avoid disfiguring changes like "turban tumor".