917 resultados para Façades of buildings
Resumo:
A debate is currently prevalent among the structural engineers regarding the use of cracked versus un-cracked moment of inertia of the structural elements in analyzing and designing tall concrete buildings. (The basic definition of a tall building, according to the Journal of Structural Design of Tall Buildings Vol. 13. No. 5, 2004 is a structure that is equal to or greater than 160 feet in height, or 6 stories or greater.) The controversy is the result of differing interpretations of certain ACI (American Concrete Institute) code provisions. The issue is whether designers should use cracked moment of inertia in order to estimate lateral deflection and whether the computed lateral deflection should be used to carry out subsequent second-order analysis (analysis considering the effect of first order lateral deflections on bending moment and shear stresses). On one hand, bending moments and shear forces estimated based on un-cracked moment of inertia of the sections may result in conservative designs by overestimating moments and shears. On the other hand, lateral deflections may be underestimated due to the same analyses resulting in unsafe designs.
Resumo:
Peer reviewed
Resumo:
In recent years, we have seen an improvement of existing facilities in dwellings in Portugal. Within the heat pumps systems, there is a special type known as direct expansion heat pump assisted by Solar Collector (DX-SAHP). It was calculate the SPF indicator for 30 regions of Portugal. It was analyses the potential of reductions of CO2 and primary energy use for the retrofitting of DHW preparation systems. It was found that the performances of this type of equipment are benefiting from the Portuguese climate conditions, especially in the South and in the Autonomous Regions. Best SPF was obtained for Beja. It was found in all regions of the high potential for reducing CO2 emissions and verifying a potential significant reduction of primary energy consumption.
Resumo:
In this thesis I investigate issues of post-war concrete buildings and how we can both add value and make adaptable what we have traditionally defined as not valuable and not adaptable. 55% of United States’ commercial building stock was built between the years of 1960 and 1980, leaving 36 billion square feet of building material to be adaptively reused or at the bottom of a landfill. Currently, our culture does not value many character defining features of these buildings making the preservation of these buildings difficult, especially at this 50 year critical moment of both the attribution of a “historic” status and time when major renovation of these buildings needs to occur. How can architects add value to a building type, sometimes called “brutalist”, that building culture currently under values and thinks is “obsolete”? I tested this hypothesis using the James Forrestal Building in Washington D.C. After close study of the obsolescence, value,history and existing conditions, I propose a design that adds value to Southwest Washington D.C. and may serve as an example for post-war renewal around the country.
Resumo:
Indoor Air 2016 - The 14th International Conference of Indoor Air Quality and Climate
Resumo:
Partial cadastral map showing zoning boundary.
Resumo:
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
Resumo:
Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.
Resumo:
Acoustic measurements were performed in eight schools of different levels of education (from kindergarten to college) located in Viseu – Portugal. The acoustic evaluation was made in order to analyze the most common problems that may condition the acoustic environment inside school building. The acoustics evaluation of school buildings was made by the measurement of: reverberation time in classrooms; sound insulation between classrooms and between classrooms and corridors; impact sound insulation of floors and airborne sound insulation of façade. The sound insulation of façade was made with all elements closed and with natural ventilation conditions (banners or windows tilt mode). It was found that most of the studied cases revealed disabled constructive aspects in relation to the acoustic requirements of school buildings compromising the quality of education.
Resumo:
In order to turn more efficient the heating of class rooms in the lower floor of the old building of the University of Évora (a XVI century building), five drillings were organised inside the area of the university (Figure 1). The purpose was to use the temperature differential of groundwater in relation to air, by means of a heat exchanger, and use this process to heat the rooms using less energy, turning the heating process less expensive. The wells were drilled in fractured rocks (gneisses), and the purpose was to locate them at least around 100 m one from each other, whilst trying to have a hydraulic connection in-between. From the five initial wells, four were successful in terms of productivity, but just two of them (RA1 and RA2) proved to be hydraulically connected. The wells were equipped with screens for all their drilled depth (100 m), except for the first six meters and some two or three pipes of six meters each, to allow space for the installation for submersible pumps. The length of the installed screens guarantees a good efficiency of the system. In the wells with no connection, the heating system can work using each single well for abstraction and injection, but the process is much less efficient than in the cases where interaction between wells is possible through the rock’s fracture network.
Resumo:
Aggregate masonry buildings have been generated over the years, allowing the interaction of different aggregated structural units under seismic action. The first part of this work is focused on the seismic vulnerability and fragility assessment of clay brick masonry buildings, sited in Bologna (Italy), with reference, at first, to single isolated structural units, by means of the Response Surface statistical method, taking into account some variabilities and uncertainties involved in the problem. The seismic action was defined by means of a group of selected registered accelerograms, in order to analyse the effect of the variability of the earthquakes. Identical and different structural units chosen by the Response Surface generated simulations are then aggregated in row, in order to compare the collapse PGA referred to the isolated structural unit and the one referred to the aggregate structure. The second part is focused on the seismic vulnerability and fragility assessment of stone masonry structures, sited in Seixal (Portugal), applying a methodology similar to that used for the buildings sited in Bologna. Since the availability of several information, the analyses involved the assessment of the most prevalent structural typologies in the area, considering the variability of a set of structural and geometrical parameters. The results highlighted the importance of the statistic procedures as method able to consider the variabilities and the uncertainties involved in the problem of the fragility of unreinforced masonry structures, in absence of accurate investigations on the structural typologies, as in the Seixal case study. Furthermore, it was showed that the structural units along the unreinforced clay brick or stone masonry aggregates cannot be analysed as isolated, as they are affected by the effect of the aggregation with adjacent structural units, according to the different directions of the seismic action considered and to their different position along the row aggregate.
Resumo:
Building Information Modelling is changing the design and construction field ever since it entered the market. It took just some time to show its capabilities, it takes some time to be mastered before it could be used expressing all its best features. Since it was conceived to be adopted from the earliest stage of design to get the maximum from the decisional project, it still struggles to adapt to existing buildings. In fact, there is a branch of this methodology that is dedicated to what has been already made that is called Historic BIM or HBIM. This study aims to make clear what are BIM and HBIM, both from a theoretical point of view and in practice, applying from scratch the state of the art to a case study. It had been chosen the fortress of San Felice sul Panaro, a marvellous building with a thousand years of history in its bricks, that suffered violent earthquakes, but it is still standing. By means of this example, it will be shown which are the limits that could be encountered when applying BIM methodology to existing heritage, moreover will be pointed out all the new features that a simple 2D design could not achieve.
Resumo:
The aim of this work is to investigate the seismic improvement obtained through external strengthening structures applied on existing reinforced concrete buildings. An innovative integration with pre-assembled technological envelope components is also presented with the aim of achieving a holistic renovation. Particular attention was paid to the timber solution with an innovative post-tensioned connection between cross-laminated timber panels, which was the subject of an experimental campaign