907 resultados para FT-IR Imaging
Resumo:
The synthesis of size-monodispersed indium nanoparticles via an innovative simultaneous phase transfer and ripening method is reported. The formation of nanoparticles occurs in a one-step process instead of well-known two-step phase transfer approaches. The synthesis involves the reduction of InCl3 with LiBH4 at ambient temperature and although the reduction occurs at room temperature, fine indium nanoparticles, with a mean diameter of 6.4 ± 0.4 nm, were obtained directly in non-polar n-dodecane. The direct synthesis of indium nanoparticles in n-dodecane facilitates their fast formation and enhances their size-monodispersity. In addition, the nanoparticles were highly stable for more than 2 months. The nanoparticles were characterised by dynamic light scattering (DLS), small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy to determine their morphology, structure and phase purity.
Resumo:
This article reports the preliminary results of a technical and material study carried out on a 17th century panel painting located at the Chapel of the Souls in the main church of Vila Nova da Baronia (30 km away from Evora city, in southern Portugal). This painting is attributed to Jose the Escovar, a painter that worked for Evora Archiepiscopate between 1583 and 1622. Jose the Escovar is known by his mural paintings all across the Alentejo region. This is the first time that a panel painting made by this artist was studied. Analytical methods used included in situ technical photography (visible (Vis), raking light (RAK), infrared (IR), and ultraviolet (UV)), optical microscopy of cross sections, scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS), micro Raman spectroscopy, and micro Fourier transform infrared spectroscopy (m-FT-IR). The goal was to ascertain the techniques and colored materials used by Escovar on this painting so that the data can be used in future comparisons with others works attributed to this painter based on stylistic aspects.
Resumo:
The study and preservation of museum collections requires complete knowledge and understanding of constituent materials that can be natural, synthetic, or semi-synthetic polymers. In former times, objects were incorporated in museum collections and classified solely by their appearance. New studies, prompted by severe degradation processes or conservation-restoration actions, help shed light on the materiality of objects that can contradict the original information or assumptions. The selected case study presented here is of a box dating from the beginning of the 20th century that belongs to the Portuguese National Ancient Art Museum. Museum curators classified it as a tortoiseshell box decorated with gold applications solely on the basis of visual inspection and the information provided by the donor. This box has visible signs of degradation with white veils, initially assumed to be the result of biological degradation of a proteinaceous matrix. This paper presents the methodological rationale behind this study and proposes a totally non-invasive methodology for the identification of polymeric materials in museum artifacts. The analysis of surface leachates using 1H and 13C nuclear magnetic resonance (NMR) complemented by in situ attenuated total reflection infrared spectroscopy (ATR FT-IR) allowed for full characterization of the object s substratum. The NMR technique unequivocally identified a great number of additives and ATR FT-IR provided information about the polymer structure and while also confirming the presence of additives. The pressure applied during ATR FT-IR spectroscopy did not cause any physical change in the structure of the material at the level of the surface (e.g., color, texture, brightness, etc.). In this study, variable pressure scanning electron microscopy (VP-SEM-EDS) was also used to obtain the elemental composition of the metallic decorations. Additionally, microbiologic and enzymatic assays were performed in order to identify the possible biofilm composition and understand the role of microorganisms in the biodeterioration process. Using these methodologies, the box was correctly identified as being made of cellulose acetate plastic with brass decorations and the white film was identified as being composed mainly of polymer exudates, namely sulphonamides and triphenyl phosphate.
Resumo:
The present work was done on two ambrotypes and two tintypes. It aimed evaluate their chemical and physical characteristics, especially their degradation patterns. Moreover, to understand the materials used for their production and cross-check analytical and historical information about the production processes. To do so multi-analytical, non-destructive methods were applied. Technical photography highlighted the surface morphology of the objects and showed the distribution of the protective coatings on their surfaces through UV radiation, which were very different between the four pieces. OM allowed for a detailed observation of the surfaces along with the selection of areas of interest to be analysed with SEM-EDS. SEM-EDS was the technique used most extensively and the one that provided the most insightful results: it allowed to observe the morphology of the image forming particles and the differences between highlights, dark areas and the interfaces between them. Also, elemental point analysis and elemental maps were used to identify the image forming particles as silver and to detect the presence of compounds related to the production, particularly gold used to highlight jewellery, iron as the red pigment and traces of the compounds used in the photographic process containing Ag, I, Na and S . Also, some degradation compounds were analysed containing Ag, Cu, S and Cl. With μ-FT-IR the presence of collodion was confirmed and the source of the protective varnishes was identified, particularly mastic and shellac, in either mixtures of the two or only one. μ-Raman detected the presence of metallic silver and silver chloride on the objects and identified one of the red pigments as Mars red. Finally, μ-XRD showed the presence of metallic silver and silver iodide on both ambrotypes and tintypes and hematite, magnetite and wuestite on the tintypes; RESUMO: O presente estudo foi desenvolvido sobre dois ambrótipos e dois ferrótipos. O propósito consiste em estudar as suas características químicas e físicas, dando particular ênfase aos padrões de degradação. Também é pretendido compreender os materiais usados na sua produção e relacionar esta informação analítca com dados históricos de manuais técnicos contemporâneos à produção dos objectos. Para tal foram utilizadas técnicas multi-analíticas e não destrutivas. O uso da fotografia técnica permitiu uma observação da morfologia das superficies dos objectos e da distribuição das camadas de verniz através da radiação UV, muito diferente entre os quatro. A microscopia óptica proporcionou uma observação detalhada das superfícies assim como a selecção de pontos de interesse para serem analisados com SEM-EDS. SEM-EDS foi a técnica usada mais extensivamente e a que proporcionou os resultados mais detalhados: observação da morofologia das partículas formadoras da imagem e as diferenças entre zonas de altas luzes, baixas luzes e as interfaces entre elas. A análise elemental e os mapas elementares foram usados para detectar prata nas partículas formadoras da imagem e a presença de compostos relacionados com a produção, em particular ouro utilizado para realçar joalharia, ferro no pigmento vermelho e vestígios de compostos utilizados no processo fotográfico incluindo Ag, I, Na e S. Do mesmo modo, alguns compostos de degradação foram analisados contendo Ag, Cu, S e Cl. Com μ-FT-IR a presença de colódio foi confirmada e identificada a origem dos vernizes, mástique e goma-laca, tanto em misturas dos dois como apenas um. Com μ-Raman foi detectada a presença de prata metálica e de cloreto de prata e identificado um dos pigmentos vermelhos como Mars red. Finalmente, μ-DRX revelou a presença de prata metálica e iodeto de prata tanto nos ambrótipos como nos ferrótipos e hematite, magnetite e wuestite nos ferrótipos.
Resumo:
Während der letzten Jahre wurde für Spinfilter-Detektoren ein wesentlicher Schritt in Richtung stark erhöhter Effizienz vollzogen. Das ist eine wichtige Voraussetzung für spinaufgelöste Messungen mit Hilfe von modernen Elektronensp ektrometern und Impulsmikroskopen. In dieser Doktorarbeit wurden bisherige Arbeiten der parallel abbildenden Technik weiterentwickelt, die darauf beruht, dass ein elektronenoptisches Bild unter Ausnutzung der k-parallel Erhaltung in der Niedrigenergie-Elektronenbeugung auch nach einer Reflektion an einer kristallinen Oberfläche erhalten bleibt. Frühere Messungen basierend auf der spekularen Reflexion an einerrnW(001) Oberfläche [Kolbe et al., 2011; Tusche et al., 2011] wurden auf einenrnviel größeren Parameterbereich erweitert und mit Ir(001) wurde ein neues System untersucht, welches eine sehr viel längere Lebensdauer der gereinigten Kristalloberfläche im UHV aufweist. Die Streuenergie- und Einfallswinkel-“Landschaft” der Spinempfindlichkeit S und der Reflektivität I/I0 von gestreuten Elektronen wurde im Bereich von 13.7 - 36.7 eV Streuenergie und 30◦ - 60◦ Streuwinkel gemessen. Die dazu neu aufgebaute Messanordnung umfasst eine spinpolarisierte GaAs Elektronenquellernund einen drehbaren Elektronendetektor (Delayline Detektor) zur ortsauflösenden Detektion der gestreuten Elektronen. Die Ergebnisse zeigen mehrere Regionen mit hoher Asymmetrie und großem Gütefaktor (figure of merit FoM), definiert als S2 · I/I0. Diese Regionen eröffnen einen Weg für eine deutliche Verbesserung der Vielkanal-Spinfiltertechnik für die Elektronenspektroskopie und Impulsmikroskopie. Im praktischen Einsatz erwies sich die Ir(001)-Einkristalloberfläche in Bezug auf längere Lebensdauer im UHV (ca. 1 Messtag), verbunden mit hoher FOM als sehr vielversprechend. Der Ir(001)-Detektor wurde in Verbindung mit einem Halbkugelanalysator bei einem zeitaufgelösten Experiment im Femtosekunden-Bereich am Freie-Elektronen-Laser FLASH bei DESY eingesetzt. Als gute Arbeitspunkte erwiesen sich 45◦ Streuwinkel und 39 eV Streuenergie, mit einer nutzbaren Energiebreite von 5 eV, sowie 10 eV Streuenergie mit einem schmaleren Profil von < 1 eV aber etwa 10× größerer Gütefunktion. Die Spinasymmetrie erreicht Werte bis 70 %, was den Einfluss von apparativen Asymmetrien deutlich reduziert. Die resultierende Messungen und Energie-Winkel-Landschaft zeigt recht gute Übereinstimmung mit der Theorie (relativistic layer-KKR SPLEED code [Braun et al., 2013; Feder et al.,rn2012])
Resumo:
We present the first analytical approach to demonstrate the in situ imaging of metabolites from formalin-fixed, paraffin-embedded (FFPE) human tissue samples. Using high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR MSI), we conducted a proof-of-principle experiment comparing metabolite measurements from FFPE and fresh frozen tissue sections, and found an overlap of 72% amongst 1700 m/z species. In particular, we observed conservation of biomedically relevant information at the metabolite level in FFPE tissues. In biomedical applications, we analysed tissues from 350 different cancer patients and were able to discriminate between normal and tumour tissues, and different tumours from the same organ, and found an independent prognostic factor for patient survival. This study demonstrates the ability to measure metabolites in FFPE tissues using MALDI-FT-ICR MSI, which can then be assigned to histology and clinical parameters. Our approach is a major technical, histochemical, and clinicopathological advance that highlights the potential for investigating diseases in archived FFPE tissues.
Resumo:
In this paper we introduce a formalization of Logical Imaging applied to IR in terms of Quantum Theory through the use of an analogy between states of a quantum system and terms in text documents. Our formalization relies upon the Schrodinger Picture, creating an analogy between the dynamics of a physical system and the kinematics of probabilities generated by Logical Imaging. By using Quantum Theory, it is possible to model more precisely contextual information in a seamless and principled fashion within the Logical Imaging process. While further work is needed to empirically validate this, the foundations for doing so are provided.
Resumo:
Retrieval with Logical Imaging is derived from belief revision and provides a novel mechanism for estimating the relevance of a document through logical implication (i.e. P(q -> d)). In this poster, we perform the first comprehensive evaluation of Logical Imaging (LI) in Information Retrieval (IR) across several TREC test Collections. When compared against standard baseline models, we show that LI fails to improve performance. This failure can be attributed to a nuance within the model that means non-relevant documents are promoted in the ranking, while relevant documents are demoted. This is an important contribution because it not only contextualizes the effectiveness of LI, but crucially ex- plains why it fails. By addressing this nuance, future LI models could be significantly improved.
Resumo:
Oxovanadium(IV) complexes VO(N-N-N)(N-N)](NO3)(2) (1-4) of (4'-phenyl)-2,2': 6',2 `'-terpyridine (ph-tpy in 1 and 2) or (4'-pyrenyl)-2,2':6',2 `'-terpyridine (py-tpy in 3 and 4) having N-N as 1,10-phenanthroline (phen in 1 and 3) or dipyrido3,2-a:2',3'-c]phenazine (dppz in 2 and 4) are prepared and characterized. The crystal structure of 1 has VO2+ group in VN5O coordination geometry. The terpyridine ligand coordinates in a meridional binding mode. The phen ligand displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo group. The complexes show a d-d band in the range of 710-770 nm in aqueous DMF (4:1 v/v). The complexes exhibit an irreversible V-IV/V-III redox response near -1.0 V vs. SCE in aqueous DMF/0.1 M KCl. The complexes bind to CT DNA giving K-b values within 3.5 x 10(5) to 1.2 x 10(6) M-1. The complexes show poor chemical nuclease activity in dark. Complexes 2-4 show photonuclease activity in UV-A light of 365 nm forming O-1(2) and (OH)-O-center dot. Complex 4 shows DNA photocleavage activity at near-IR light of 785 nm forming (OH)-O-center dot radicals. Complexes 2 and 4 show significant photocytotoxicity in HeLa cancer cells. Uptake of the complexes in HeLa cells, studied by fluorescence imaging, show predominantly cytosolic localization inside the cells.
Resumo:
Advanced composite structural components made up of Carbon Fibre Reinforced Polymers (CFRP) used in aerospace structures such as in Fuselage, Leading & Trailing edges of wing and tail, Flaps, Elevator, Rudder and entire wing structures encounter most critical type of damage induced by low velocity impact (<10 m/s) loads. Tool dropped during maintenance & service,and hailstone impacts on runways are common and unavoidable low-velocity impacts. These lowvelocity impacts induce defects such as delaminations, matrix cracking and debonding in the layered material, which are sub-surface in nature and are barely visible on the surface known as Barely Visible Impact Damage (BVID). These damages may grow under service load, leading to catastrophic failure of the structure. Hence detection, evaluation and characterization of these types of damage is of major concern in aerospace industries as the life of the component depends on the size and shape of the damage.In this paper, details of experimental investigations carried out and results obtained from a low-velocity impact of 30 Joules corresponding to the hailstone impact on the wing surface,simulated on the 6 mm CFRP laminates using instrumented drop-weight impact testing machine are presented. The Ultrasound C-scan and Infrared thermography imaging techniques were utilized extensively to detect, evaluate and characterize impact damage across the thickness of the laminates.
Resumo:
Highly stable, branched gold nanoworms are formed spontaneously in an acetamide-based room temperature molten solvent without any additional external stabilizing or aggregating agent. The nanoworms can be anchored onto solid substrates such as indium tin oxide (ITO) without any change in morphology. The anchored nanoworms are explored as substrates for surface enhanced Raman scattering (SERS) studies using non-fluorescent 4-mercaptobenzoic acid (4-MBA) and fluorescent rhodamine 6G (R6G) as probe molecules. The anchored nanostructured particles respond to near IR (1064 nm) as well as visible (785, 632.8 and 514 nm) excitation lasers and yield good surface enhancement in Raman signals. Enhancement factors of the order 10(6)-10(7) are determined for the analytes using a 1064 nm excitation source. Minimum detection limits based on adsorption from ethanolic solutions of 1028 M 4-MBA and aqueous solutions of 1027 M R6G are achieved. Experimental Raman frequencies and frequencies estimated by DFT calculations are in fairly good agreement. SERS imaging of the nanostructures suggests that the substrates comprising of three dimensional, highly interlinked particles are more suited than particles fused in one dimension. The high SERS activity of the branched nanoworms may be attributed to both electromagnetic and charge transfer effects.
Resumo:
Oxovanadium(IV) complexes VO(R-tpy)(cur)](ClO4) (1, 2) of curcumin (Hcur) and terpyridine ligands (R-tpy) where R is phenyl (phtpy in 1) or p-triphenylphosphonium methylphenyl bromide (C6H4CH2PPh3Br) (TPP-phtpy in 2) were prepared and characterized and their DNA photocleavage activity, photocytotoxicity and cellular localization in cancer cells (HeLa and MCF-7) were studied. Acetylacetonate (acac) complexes VO(R-tpy)(acac)](ClO4) of phtpy (3) and TPP-phtpy (4) were prepared and used as the control species. These complexes showed efficient cleavage of pUC19 DNA in visible light of 454 nm and near-IR light of 705 rim. Complexes 1 and 2 showed significant photocytotoxicity in visible light of 400-700 nm. FACS analysis showed sub-G1/G0 phase cell-cycle arrest in cancer cells when treated with 1 and 2 in visible light in comparison with the dark controls. Fluorescence microscopic studies revealed specific localization of the p-triphenylphosphonium complex 2 in the mitochondria of MCF-7 cancer cells whereas no such specificity was observed for complex 1.
Resumo:
The coherent anti-Stokes Raman scattering (CARS) microscope with the combination of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labelling. CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscope. In this paper, the intensity distribution and the polarization property of the optical field near the focus was calculated. By using the Green function, the precise analytic solution to the wave equation of a Hertzian dipole source was obtained. We found that the intensity distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscope (e.g. the point spread function) will fail to describe the imaging properties of the CARS microscope.