983 resultados para FLUORESCENCE UP-CONVERSION
Resumo:
Using fluorescence microscopy with single molecule sensitivity it is now possible to follow the movement of individual fluorophore tagged molecules such as proteins and lipids in the cell membrane with nanometer precision. These experiments are important as they allow many key biological processes on the cell membrane and in the cell, such as transcription, translation and DNA replication, to be studied at new levels of detail. Computerized microscopes generate sequences of images (in the order of tens to hundreds) of the molecules diffusing and one of the challenges is to track these molecules to obtain reliable statistics such as speed distributions, diffusion patterns, intracellular positioning, etc. The data set is challenging because the molecules are tagged with a single or small number of fluorophores, which makes it difficult to distinguish them from the background, the fluorophore bleaches irreversibly over time, the number of tagged molecules are unknown and there is occasional loss of signal from the tagged molecules. All these factors make accurate tracking over long trajectories difficult. Also the experiments are technically difficulty to conduct and thus there is a pressing need to develop better algorithms to extract the maximum information from the data. For this purpose we propose a Bayesian approach and apply our technique to synthetic and a real experimental data set.
Resumo:
Background: Metabolic syndrome (MS) is a clustering of cardiometabolic risk factors that is considered a predictor of cardiovascular disease, type 2 diabetes and mortality. There is no consistent evidence on whether the MS construct works in the same way in different populations and at different stages in life. Methods: We used confirmatory factor analysis to examine if a single-factor-model including waist circumference, triglycerides/HDL-c, insulin and mean arterial pressure underlies metabolic syndrome from the childhood to adolescence in a 6-years follow-up study in 174 Swedish and 460 Estonian children aged 9 years at baseline. Indeed, we analyze the tracking of a previously validated MS index over this 6-years period. Results: The estimates of goodness-of-fit for the single-factor-model underlying MS were acceptable both in children and adolescents. The construct stability of a new model including the differences from baseline to the end of the follow-up in the components of the proposed model displayed good fit indexes for the change, supporting the hypothesis of a single factor underlying MS component trends. Conclusions: A single-factor-model underlying MS is stable across the puberty in both Estonian and Swedish young people. The MS index tracks acceptably from childhood to adolescence.
Resumo:
The Carr Lake Project aims to convert Carr Lake’s 450 acres of agriculture fields into a regional multi-use park that will benefit flood protection, water quality, and wildlife habitat, while also providing additional recreational areas for the local community. The Project is represented by an informal consortium of interested parties including the Watershed Institute of California State University Monterey Bay, The City of Salinas, 1000 Friends of Carr Lake, and the Big Sur Land Trust. (Document contains 54 pages)