926 resultados para FLEXURAL STRENGHT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work combined compression moulding with subsequent super-critical carbonation treatment (100 bar, 60 °C, 24 h) to fabricate cement and/or lime based ceramic composites with various aggregates. Composites were examined using mechanical testing, XRD, He pycnometry and thin-section petrography. Composites with lime-only binders were significantly weaker than those with cement-lime binders regardless of the degree of carbonation. Flexural strengths in excess of >10 MPa were routinely achieved in large (>100 mm) specimens. Aggregate type (calcareous vs. siliceous) had a significant effect on the microstructure and properties of the composites. Calcareous aggregates appear to augment the strength enhancement effected during super-critical carbonation by encouraging preferential precipitation of calcite at the binder-aggregate interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fine control of the mPOF Bragg grating spectrum properties, such as maximum reflected power and 3dB bandwidth, through acousto-optic modulation (AOM) using flexural regime is presented. A numerical comparison of the strain field along mPOFBG - AOM and the similar structure with SMFBG-AOM was presented, showing that the strain field amplitude is higher along the mPOFBG due to its smaller mechanical stiffness. The obtained results can be used in the development of fine-tuned optical filters using low voltage sources and low frequency regimes, to obtain tunable optical filters and to control the shape of the spectrum. Studies of the behavior in different gratings (such as phase shifted and long period gratings) for photonic applications, such as tunable notch filters or tunable cavities, are in progress. It can potentially be applied on tunable optical filters for POF transmission. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Structural ceramics were manufactured from industrial byproducts and lime by a compression moulding/vacuum dewatering technique. Treatment of these ceramics with supercritical carbon dioxide was found to both significantly increase their flexural strength and activate cementation in the industrial byproducts at least as efficiently as heat curing. Flexural strengths of up to 10 MPa were achieved. Strength improvements were associated with decreased porosity and conversion of calcium hydroxide to calcium carbonate. Life cycle assessment of proposed products made from such materials indicated that the total reduction in embodied carbon dioxide achieved, as a result of combining use of byproducts with recombination of carbon dioxide, was up to 70%. © 2010 Institute of Materials, Minerals and Mining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980’s. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) - Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bonded repair of concrete structures with fiber reinforced polymer (FRP) systems is increasingly being accepted as a cost-efficient and structurally viable method of rapid rehabilitation of concrete structures. However, the relationships between long-term performance attributes, service-life, and details of the installation process are not easy to quantify. Accordingly, there is currently a lack of generally accepted construction specifications, making it difficult for the field engineer to certify the adequacy of the construction process. ^ The objective of the present study, as part of the National Cooperative Highway Research Program (NCHRP) Project 10-59B, was to investigate the effect of surface preparation on the behavior of wet lay-up FRP repair systems and consequently develop rational thresholds that provide sufficient performance. ^ The research program was comprised of both experimental and analytical work for wet lay-up FRP applications. The experimental work included flexure testing of sixty-seven (67) reinforced concrete beams and bond testing of ten (10) reinforced concrete blocks. Four different parameters were studied: surface roughness, surface flatness, surface voids and bug holes, and surface cracks/cuts. The findings were analyzed from various aspects and compared with the data available in the literature. As part of the analytical work, finite element models of the flexural specimens with surface flaws were developed using ANSYS. The purpose of this part was to extend the parametric study on the effects of concrete surface flaws and verify the experimental results based on nonlinear finite element analysis. ^ Test results showed that surface roughness does not appear to have a significant influence on the overall performance of the wet lay-up FRP systems with or without adequate anchorage, and whether failure was by debonding or rupture of FRP. Both experimental and analytical results for surface flatness proved that peaks on concrete surface, in the range studied, do not have a significant effect on the performance of wet lay-up FRP systems. However, valleys of particular size could reduce the strength of wet lay-up FRP systems. Test results regarding surface voids and surface cracks/cuts revealed that previously suggested thresholds for these flaws appear to be conservative, as also confirmed by analytical study. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims to evaluate the potential use of bagasse ash from sugar cane (CBC) as a flux, replacing phyllite and/or feldspar in standard industrial mass production of enameled porcelain, verifying the possibility of the CBC contribute to the overall reduction of the coefficient of thermal expansion of the ceramic mass. To this end, as a result of the research, we characterized the raw material components of the standard mass (clay, phyllite, kaolin, feldspar, quartz and talc) and the residue of BCC, by testing by XRF, XRD, AG, DTA and ATG. Specimens (CDP) were manufactured in the dimensions of 100 mm x 50 mm x 8 mm in uniaxial matrix under compaction pressure of 33 MPa, assembled in batches of 3 units subsequently sintered at temperatures of 1150°C to 1210°C by varying the Rating Scale at 10°C, heating and cooling ramp of 50°C/min and 25°C/min, with levels of 1 min, 3 min, 5 min, 8 min, 10 min, 15 min, 30 min and 60 min. analyzing the results of the physical properties of water absorption (WA), linear firing shrinkage (LFS), dilatometric analysis (DTA), flexural strain (SFT) and SEM of the sintered bodies in order to verify the adequacy of CDP to ISO 13006, ISO 10545, NBR 13816 standards; NBR 13817 and NBR 13818. The study showed that the formulations that best suit the requirements of the standards are:. G4 - which was applied in 10% of replacing the CBC phyllite, sintering temperature 1210 ° C for 10 min and porch, and F3 - with application of 7.5% of CBC to replace the feldspar in the sintering temperatures of 1190°C, 1200°C and 1210°C for 10 min and porch. These formulations showed better performance regarding the formation of primary and secondary mullite, with considerable reduction of cracks and pores, meeting the prerequisites of standards for glazed porcelain. The results shows that the use of the CBC as a flux in the preparation of porcelain mass meets standard parameters for the manufacture of the product, and thereby can reduce environmental impact and the cost of production. Therefore, it is recommended to use this residue in the ceramics industry, due to its industrial, commercial and collaborative viability for sustainability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrical ceramic insulators industry, uses noble raw materials such as siliceous and aluminous clays of white burning, in order to provide plasticity of the mass and contribute to electrical and mechanical properties required of the product, and feldspar with the flux function In literature references the composition of the masses indicates that the clay participates in percentage between 20 and 32, and feldspar 8 to 35, these materials have significant cost. In this research was performed the total replacement of commercial clay, for white burning clay from Santa Luzia region in southern Bahia and partial replacement of feldspar by ash residue of husk conilon coffee burning, from extreme south of Bahia. The objective of replacement these raw materials is to aver its technical feasibility and call attention for the embryo pole of ceramic industry for the existing in the south and extreme south of Bahia, which has significant reserves of noble raw materials such as clay white burning, kaolin, quartz and feldspar, and generates significant volume of gray husk conilon coffee as alternate flux. Clay Santa Luzia is prima noble material whose current commercial application is the production of white roofing. The residue of coffee husk ash is discarded near of production sites and is harmful to the environment. Phase diagrams and statistic design of experiments, were used for optimization and cost savings in research. The results confirmed the expectations of obtaining electrical ceramic insulators, with white burning clay of Santa Luzia and partial replacement up to 35.4% of feldspar, by treaty residue of conilon ash coffee husk burning. The statistic design that showed best results was for formulation with percentages of: clay 26.4 to 30.4%; kaolin 14.85 to 17.1%; feldspar 12.92 to 16.96%; R2 residue 7.08 to 9.2% and Quartz 32.5 to 38.75%, relative to the total mass of the mixture. The best results indicated; 0.2 to 1.4% apparent porosity , water absorption 0.1 to 0.7%, flexural strength 35 to 45MPa , dielectric strength 35-41 kV/cm , the transverse resistivity 8x109 2.5x1010 Ω.cm and for the dielectric constant ε/ε0 7 to 10.4, specification parameters for manufacturing ceramic electrical insulators of low and medium voltage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During its operations, the oil industry generates a lot of waste, including gravel from drilling. Control of environmental impacts caused by this waste represents a major challenge. Such impacts can be minimized when it is given an appropriate management by being properly treated and properly disposed or recycled. The properties of these materials can be greatly influenced when a waste is added to its composition. This work aims to study the incorporation of gravel waste oil-well drilling in the standard body for production of red ceramic from a ceramic industry in São Gonçalo do Amarante / RN. The success of the incorporation can minimize costs in the production of ceramic pieces and reduce the environmental impacts caused by waste. The raw materials used were collected, characterized, and formulated with the percentages of 0%, 20% and 40% by weight of substitution of residue were synthesized at temperatures of 900, 1.010 and 1.120 °C using 30 minute firing intervals, 1 hour and 30min and 2 hours and 30 minutes, based on a factorial design 2³. Samples were then subjected to the tests of Water Absorption, Linear Retraction Firing, Flexural Rupture Strength, Apparent Porosity and Apparent Specific mass and Scanning Electron Microscopy (SEM) of break section. The results showed that the use of the residue for the manufacture of the ceramic products is possible (tiles, bricks and massive hollow bricks) replacing the clay to 40%, meeting the requirements of the standard and the literature for the technological properties of the final product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In States of Paraíba (PB) and Rio Grande do Norte (RN), northeast of Brazil, the most significant deposits of non-metallic industrial minerals are pegmatites, quartzites and granites, which are located in Seridó region. Extraction of clay, quartz, micas and feldspars occurs mainly in the cities of Várzea (PB), OuroBranco (RN) and Parelhas (RN). Mining companies working in the extraction and processing of quartzite generate large volumes of waste containing about 90% SiO2 in their chemical composition coming from quartz that is one of the basic constituents of ceramic mass for the production of ceramic coating. Therefore, this work evaluates the utilization of these wastes on fabrication of high-quality ceramic products, such as porcelain stoneware, in industrial scale. Characterization of raw materials was based on XRF, XRD, GA, TGA and DSC analysis, on samples composed by 57% of feldspar, 37% of argil and 6% of quartzite residues, with 5 different colors (white, gold, pink, green and black). Samples were synthesized in three temperatures, 1150°C, 1200°C and 1250°C, with one hour isotherm and warming-up tax of 10°C/min. After synthesizing, the specimens were submit to physical characterization tests of water absorption, linear shrinkage, apparently porosity, density, flexural strain at three points. The addition of 6% of quartzite residue to ceramic mass provided a final product with technological properties attending technical norms for the production of porcelain stoneware; best results were observed at a temperature of 1200°C. According to the results there was a high iron oxide on black quartzite, being their use in porcelain stoneware discarded by ethic and structural question, because the material fused at 1250°C. All quartzite formulations had low water absorption when synthesized at 1200°C, getting 0.1% to 0.36% without having gone through the atomization process. Besides, flexural strain tests overcame 27 MPa reaching the acceptance limits of the European Directive EN 100, at 1200°C synthesizing. Thus, the use of quartzite residues in ceramic masses poses as great potential for the production of porcelain stoneware.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to manufacture and characterize a hybrid plastic composite with the matrix isophthalic polyester resin base and having as reinforcing glass fiber and the dry endocarp of coconut (Coco nucifera Linn) in the form of particles as filler. The composite was made industrially in Tecniplas Industry and Trade LTDA. in the form of plate, and was manufactured process made by the manual lamination (Hand Lay Up). From the plate they were prepared test specimens for testing density, water absorption, uniaxial traction in dry and wet states, and testing of bending, as well as studies on the behavior of the generated fractures, macroscopic and microscopic, in mechanical tests through. All tests were performed in order to find the most viable applications the hybrid composite manufactured. The tensile and bending tests were analyzed last tensile properties, elasticity and deformation module. After the studies, it is observed that the percentage moisture absorbed was 3.03%. The presence of moisture in the tensile test meant a decrease of 19.77% from last stand, and 5.26% in the elastic modulus. For bending tests gave an average value of 69.13 MPa flexural strength. The results show the application of hybrid composite studied in lightweight structures, indoors, which require low / medium performance traction demands, and which involve flexural requests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materiais compósitos restauradores representam um dos mais bem sucedidos biomateriais na pesquisa moderna, na substituição do tecido biológico em aparência e função. Nesta linha, a porcelana feldspática tem sido largamente usada em odontologia devido suas interessantes qualidades como estabilidade de cor, propriedades estéticas, elevada durabilidade mecânica, biocompatibilidade, baixa condutividade térmica e elevada resistência ao desgaste. Entretanto, este material é frágil e pode falhar em ambiente oral devido ao micro-vazamento, baixa resistência à tração, descolagem ou fratura. Assim, para melhorar as propriedades mecânicas da porcelana, a zircônia parcialmente estabilizada com Ítria (Y-TZP) pode ser uma boa alternativa para fortalecer e produzir infraestruturas totalmente cerâmicas (coroas e próteses parciais fixas). Portanto, este estudo tem por objetivo avaliar as propriedades mecânicas e características microestruturais da porcelana reforçada com zircônia (3Y-TZP) em diferentes conteúdos e as variáveis que afetam as propriedades mecânicas destes materiais. O estudo de caracterização revelou que a zircônia comercial apresenta melhores resultados quando comparada com a zircônia sintetizada pelo CPM. Assim, os estudos seguintes utilizaram a zircônia comercial para todos os testes requeridos. As partículas de zircônia apresentam elevadas propriedades mecânicas quando comparadas a zircônia aglomerada. Os diferentes conteúdos revelam que as propriedades mecânicas dos compósitos aumentam com o aumento do conteúdo volumétrico até 30% vol.% (198,5Mpa), ou seja, maior resistência à flexão quando comparada com os outros compósitos. Do mesmo modo, a resistência ao desgaste para os compósitos com (30%, vol.% de zircônia) apresenta valores superiores quando comparado aos demais compósitos. Na adesão cerâmico-cerâmico a porcelana exibe elevada adesão para a superfície de zircônia porosa quando comparada a superfície rugosa. Os furos superficiais (PZ) e aplicação de compósitos com camada intermediária (RZI) na zircônia causam separadamente uma melhoria da resistência ao cisalhamento da zircônia-porcelana quando comparados as amostras convencionais de zircônia-porcelana (RZ), embora não sejam estatisticamente significativas (p>0.05). A presença de uma camada intermediaria produz um aumento significativo na força de ligação (~55%) em relação as amostras convencionais (RZ). Portanto, a correta a correta configuração e tratamento superficial podem produzir subestruturas com qualidade e força de ligação adequadas aos requisitos odontológicos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burn injuries in the United States account for over one million hospital admissions per year, with treatment estimated at four billion dollars. Of severe burn patients, 30-90% will develop hypertrophic scars (HSc). Current burn therapies rely upon the use of bioengineered skin equivalents (BSEs), which assist in wound healing but do not prevent HSc. HSc contraction occurs of 6-18 months and results in the formation of a fixed, inelastic skin deformity, with 60% of cases occurring across a joint. HSc contraction is characterized by abnormally high presence of contractile myofibroblasts which normally apoptose at the completion of the proliferative phase of wound healing. Additionally, clinical observation suggests that the likelihood of HSc is increased in injuries with a prolonged immune response. Given the pathogenesis of HSc, we hypothesize that BSEs should be designed with two key anti-scarring characterizes: (1) 3D architecture and surface chemistry to mitigate the inflammatory microenvironment and decrease myofibroblast transition; and (2) using materials which persist in the wound bed throughout the remodeling phase of repair. We employed electrospinning and 3D printing to generate scaffolds with well-controlled degradation rate, surface coatings, and 3D architecture to explore our hypothesis through four aims.

In the first aim, we evaluate the impact of elastomeric, randomly-oriented biostable polyurethane (PU) scaffold on HSc-related outcomes. In unwounded skin, native collagen is arranged randomly, elastin fibers are abundant, and myofibroblasts are absent. Conversely, in scar contractures, collagen is arranged in linear arrays and elastin fibers are few, while myofibroblast density is high. Randomly oriented collagen fibers native to the uninjured dermis encourage random cell alignment through contact guidance and do not transmit as much force as aligned collagen fibers. However, the linear ECM serves as a system for mechanotransduction between cells in a feed-forward mechanism, which perpetuates ECM remodeling and myofibroblast contraction. The electrospinning process allowed us to create scaffolds with randomly-oriented fibers that promote random collagen deposition and decrease myofibroblast formation. Compared to an in vitro HSc contraction model, fibroblast-seeded PU scaffolds significantly decreased matrix and myofibroblast formation. In a murine HSc model, collagen coated PU (ccPU) scaffolds significantly reduced HSc contraction as compared to untreated control wounds and wounds treated with the clinical standard of care. The data from this study suggest that electrospun ccPU scaffolds meet the requirements to mitigate HSc contraction including: reduction of in vitro HSc related outcomes, diminished scar stiffness, and reduced scar contraction. While clinical dogma suggests treating severe burn patients with rapidly biodegrading skin equivalents, these data suggest that a more long-term scaffold may possess merit in reducing HSc.

In the second aim, we further investigate the impact of scaffold longevity on HSc contraction by studying a degradable, elastomeric, randomly oriented, electrospun micro-fibrous scaffold fabricated from the copolymer poly(l-lactide-co-ε-caprolactone) (PLCL). PLCL scaffolds displayed appropriate elastomeric and tensile characteristics for implantation beneath a human skin graft. In vitro analysis using normal human dermal fibroblasts (NHDF) demonstrated that PLCL scaffolds decreased myofibroblast formation as compared to an in vitro HSc contraction model. Using our murine HSc contraction model, we found that HSc contraction was significantly greater in animals treated with standard of care, Integra, as compared to those treated with collagen coated-PLCL (ccPLCL) scaffolds at d 56 following implantation. Finally, wounds treated with ccPLCL were significantly less stiff than control wounds at d 56 in vivo. Together, these data further solidify our hypothesis that scaffolds which persist throughout the remodeling phase of repair represent a clinically translatable method to prevent HSc contraction.

In the third aim, we attempt to optimize cell-scaffold interactions by employing an anti-inflammatory coating on electrospun PLCL scaffolds. The anti-inflammatory sub-epidermal glycosaminoglycan, hyaluronic acid (HA) was used as a coating material for PLCL scaffolds to encourage a regenerative healing phenotype. To minimize local inflammation, an anti-TNFα monoclonal antibody (mAB) was conjugated to the HA backbone prior to PLCL coating. ELISA analysis confirmed mAB activity following conjugation to HA (HA+mAB), and following adsorption of HA+mAB to the PLCL backbone [(HA+mAB)PLCL]. Alican blue staining demonstrated thorough HA coating of PLCL scaffolds using pressure-driven adsorption. In vitro studies demonstrated that treatment with (HA+mAB)PLCL prevented downstream inflammatory events in mouse macrophages treated with soluble TNFα. In vivo studies using our murine HSc contraction model suggested positive impact of HA coating, which was partiall impeded by the inclusion of the TNFα mAB. Further characterization of the inflammatory microenvironment of our murine model is required prior to conclusions regarding the potential for anti-TNFα therapeutics for HSc. Together, our data demonstrate the development of a complex anti-inflammatory coating for PLCL scaffolds, and the potential impact of altering the ECM coating material on HSc contraction.

In the fourth aim, we investigate how scaffold design, specifically pore dimensions, can influence myofibroblast interactions and subsequent formation of OB-cadherin positive adherens junctions in vitro. We collaborated with Wake Forest University to produce 3D printed (3DP) scaffolds with well-controlled pore sizes we hypothesized that decreasing pore size would mitigate intra-cellular communication via OB-cadherin-positive adherens junctions. PU was 3D printed via pressure extrusion in basket-weave design with feature diameter of ~70 µm and pore sizes of 50, 100, or 150 µm. Tensile elastic moduli of 3DP scaffolds were similar to Integra; however, flexural moduli of 3DP were significantly greater than Integra. 3DP scaffolds demonstrated ~50% porosity. 24 h and 5 d western blot data demonstrated significant increases in OB-cadherin expression in 100 µm pores relative to 50 µm pores, suggesting that pore size may play a role in regulating cell-cell communication. To analyze the impact of pore size in these scaffolds on scarring in vivo, scaffolds were implanted beneath skin graft in a murine HSc model. While flexural stiffness resulted in graft necrosis by d 14, cellular and blood vessel integration into scaffolds was evident, suggesting potential for this design if employed in a less stiff material. In this study, we demonstrate for the first time that pore size alone impacts OB-cadherin protein expression in vitro, suggesting that pore size may play a role on adherens junction formation affiliated with the fibroblast-to-myofibroblast transition. Overall, this work introduces a new bioengineered scaffold design to both study the mechanism behind HSc and prevent the clinical burden of this contractile disease.

Together, these studies inform the field of critical design parameters in scaffold design for the prevention of HSc contraction. We propose that scaffold 3D architectural design, surface chemistry, and longevity can be employed as key design parameters during the development of next generation, low-cost scaffolds to mitigate post-burn hypertrophic scar contraction. The lessening of post-burn scarring and scar contraction would improve clinical practice by reducing medical expenditures, increasing patient survival, and dramatically improving quality of life for millions of patients worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.