925 resultados para FIBROBLAST GROWTH FACTOR RECEPTOR 1
Resumo:
Osteoarthritis (OA) is the most common form of arthritis with a high socioeconomic burden, with an incompletely understood etiology. Evidence suggests a role for the transforming growth factor beta (TGF-ß) signalling pathway and epigenomics in OA. The aim of this thesis was to understand the involvement of the TGF-ß pathway in OA and to determine the DNA methylation patterns of OA-affected cartilage as compared to the OA-free cartilage. First, I found that a common SNP in the BMP2 gene, a ligand in the Bone morphogenetic protein (BMP) subunit of TGF-ß pathway, was associated with OA in the Newfoundland population. I also showed a genetic association between SMAD3 - a signal transducer in the TGF-ß subunit of the TGF-ß signalling pathway - and the total radiographic burden of OA. I further demonstrated that SMAD3 is over-expressed in OA cartilage, suggesting an over activation of the TGF-ß signalling in OA. Next, I examined the connection of these genes in the regulation of matrix metallopeptidase 13 (MMP13) - an enzyme known to destroy extracellular matrix in OA cartilage - in the context of the TGF-ß signalling. The analyses showed that TGF-ß, MMP13, and SMAD3 were overexpressed in OA cartilage, whereas the expression of BMP2 was significantly reduced. The expression of TGF-ß was positively correlated with that of SMAD3 and MMP13, suggesting that TGF-ß signalling is involved in up-regulation of MMP13. This regulation, however, appears not to be controlled by SMAD3 signals, possibly due to the involvement of collateral signalling, and to be suppressed by BMP regulation in healthy cartilage, whose levels were reduced in end-stage OA. In a genome-wide DNA methylation analysis, I reported CpG sites differentially methylated in OA and showed that the cartilage methylome has a potential to distinguish between OA-affected and non-OA cartilage. Functional clustering analysis of the genes harbouring differentially methylated loci revealed that they are enriched in the skeletal system morphogenesis pathway, which could be a potential candidate for further OA studies. Overall, the findings from the present thesis provide evidence that the TGF-ß signalling pathway is associated with the development of OA, and epigenomics might be involved as a potential mechanism in OA.
Resumo:
The cleft palate presented by transforming growth factor-β3 (Tgf-β3 ) null mutant mice is caused by altered palatal shelf adhesion, cell proliferation, epithelial-to-mesenchymal transformation and cell death. The expression of epidermal growth factor (EGF), transforming growth factor-β1 ( Tgf-β1 ) and muscle segment homeobox-1 (Msx-1) is modified in the palates of these knockout mice, and the cell proliferation defect is caused by the change in EGF expression. In this study, we aimed to determine whether this change in EGF expression has any effect on the other mechanisms altered in Tgf-β 3 knockout mouse palates. We tested the effect of inhibiting EGF activity in vitro in the knockout palates via the addition of Tyrphostin AG 1478. We also investigated possible interactions between EGF, Tgf-β 1 and Msx-1 in Tgf-β 3 null mouse palate cultures. The results show that the inhibition of EGF activity in Tgf-β 3 null mouse palate cultures improves palatal shelf adhesion and fusion, with a particular effect on cell death, and restores the normal distribution pattern of Msx-1 in the palatal esenchyme. Inhibition of TGF-β 1 does not affect either EGF or Msx-1 expression.
Resumo:
Acknowledgements This study was funded by a Natural Environment Research Council grant (NERC, project code: NBAF704). FML is funded by a NERC Doctoral Training Grant (Project Reference: NE/L50175X/1). RLS was an undergraduate student at the University of Aberdeen and benefitted from financial support from the School of Biological Sciences. DJM is indebted to Dr. Steven Weiss (University of Graz, Austria), Dr. Takashi Yada (National Research Institute of Fisheries Science, Japan), Dr. Robert Devlin (Fisheries and Oceans Canada, Canada), Prof. Samuel Martin (University of Aberdeen, UK), Mr. Neil Lincoln (Environment Agency, UK) and Prof. Colin Adams/Mr. Stuart Wilson (University of Glasgow, UK) for providing salmonid material or assisting with its sampling. We are grateful to staff at the Centre for Genomics Research (University of Liverpool, UK) (i.e. NERC Biomolecular Analysis Facility – Liverpool; NBAF-Liverpool) for performing sequence capture/Illumina sequencing and providing us with details on associated methods that were incorporated into the manuscript. Finally, we are grateful to the organizers of the Society of Experimental Biology Satellite meeting 'Genome-powered perspectives in integrative physiology and evolutionary biology' (held in Prague, July 2015) for inviting us to contribute to this special edition of Marine Genomics and hosting a really stimulating meeting.
Resumo:
INTRODUCTION: Vascular endothelial growth factor (VEGF)-induced angiogenesis requires endothelial nitric oxide synthase (eNOS) activation, however, the mechanism is largely unknown. As nitric oxide(NO) inhibits endothelial proliferation to promote capillary formation (Am J Path,159:993-1008,2001) and p21WAF1 is an important cell cycle inhibitor, we hypothesised that eNOS-induced angiogenesis requires up regulation of p21WAF1. METHODS: Human and porcine endothelial cells were cultured on growth factor reduced Materigel for in vitro tube formation and in vivo angiogenesis was assessed by hind limb ligation ischemia model.Conversely, we propose that the cytoprotective enzyme, heme oxygenase-1(HO-1), may suppress p21WAF1 to limit angiogenesis. RESULTS: The expression of p21WAF1 was up regulated in porcine aorticenothelial cells stablely transfected with a constitutively activated form of eNOS (eNOSS1177D) as well as in HUVEC infected by adenovirus encoding eNOSS1177D. When these cells were plated on growth-factor reduced Matrigel (compaired to empty vector), they enhanced in vitro angiogenesis, which was inhibited following knockdown of p21WAF1. Furthermore, over expression of p21WAF1 led to increased tube formation while p21WAF1 knockdown abrogated vascular endothelial growth factor(VEGF) and fibroblast growth factor (FGF-2) mediated angiogenesis.Conversely, the cytoprotective enzyme, heme oxygenase-1 (HO-1) when over expressed decreased p21WAF1 expression and reduced VEGF, FGF-2 and eNOSS1177D-induced angiogenesis. CONCLUSIONS: These results demonstrate that eNOS-induced angiogenesis requires up regulation of p21WAF1/CIP1 wherease, induction of HO-1 will decrease the expression of p21WAF1/CIP1 to limit angiogenesisindicating that eNOS and HO-1 regulate angiogenesis via p21WAF1/CIP1 in adiametrically opposed manner and that p21WAF1/CIP1 appears to be a central regulator of angiogenesis that offers a new therapeutic target.
Resumo:
Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cell : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.
Resumo:
Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma.
Resumo:
Reported in vitro data implicated soluble CD40 ligand (sCD40L) in endothelial dysfunction and angiogenesis. However, whether sCD40L could exert that influence in endothelial dysfunction and angiogenesis after injury in acute myocardial infarction (AMI) patients remains unclear. In the present study, we evaluated the association of sCD40L with markers of platelet activation, endothelial, and vascular function during a recovery period early after AMI. To achieve this goal, the time changes of soluble, platelet-bound, and microparticle-bound CD40L levels over 1 month were assessed in AMI patients and correlated with endothelial nitric oxide synthase (eNOS) polymorphisms, vascular endothelial growth factor (VEGF) concentrations, and platelet expression of P-selectin (CD62P). The association of soluble form, platelet-bound, and microparticle-bound CD40L with CD62P expression on platelets, a marker of platelet activation, was also assessed to evaluate the role of CD40L in the thrombosis, whereas the association with eNOS and VEGF was to evaluate the role of CD40L in vascular dysfunction. This work shows for the first time that time changes of sCD40L over 1 month after myocardial infarct onset were associated with G894T eNOS polymorphism and with the VEGF concentrations, but not to the platelet CD62P expression. These results indicate that, in terms of AMI pathophysiology, the sCD40L cannot be consider just as being involved in thrombosis and inflammation but also as having a relevant role in vascular and endothelial dysfunction.
Resumo:
Retinitis pigmentosa (RP) is a degenerative retinal disease leading to photoreceptor cell loss. In 2011, our group identified the synthetic progesterone ‘Norgestrel’ as a potential treatment for RP. Subsequent research showed Norgestrel to work through progesterone receptor membrane component 1 (PGRMC1) activation and upregulation of neuroprotective basic fibroblast growth factor (bFGF). Using trophic factor deprivation of 661W photoreceptor-like cells, we aimed to further elucidate the mechanism leading to Norgestrel-induced neuroprotection. In the present manuscript, we show by flow cytometry and live-cell immunofluorescence that Norgestrel induces an increase in cytosolic calcium in both healthy and stressed 661Ws over 24h. Specific PGRMC1 inhibition by AG205 (1 μM) showed this rise to be PGRMC1-dependent, primarily utilising calcium from extracellular sources, for blockade of L-type calcium channels by verapamil (50 μM) prevented a Norgestrel-induced calcium influx in stressed cells. Calcium influx was also shown to be bFGF-dependent, for siRNA knock down of bFGF prevented Norgestrel-PGRMC1 induced changes in cytosolic calcium. Notably, we demonstrate PGRMC1-activation is necessary for Norgestrel-induced bFGF upregulation. We propose that Norgestrel protects through the following pathway: binding to and activating PGRMC1 expressed on the surface of photoreceptor cells, PGRMC1 activation drives bFGF upregulation and subsequent calcium influx. Importantly, raised intracellular calcium is critical to Norgestrel's protective efficacy, for extracellular calcium chelation by EGTA abrogates the protective effects of Norgestrel on stressed 661W cells in vitro.
Resumo:
Prostate cancer (PCa) is the most common non-cutaneous malignant disease among males in the developed countries. Radical prostatectomy (RP) is an effective therapy for most PCa patients with localized or locally invaded tumors but in some cases the cancer recurs after RP. PCa is a heterogeneous disease, which is regulated by many factors, such as androgen receptor (AR), estrogen receptors and (ER and ER), fibroblast growth factors (FGFs) and their receptors (FGFRs). In this study, the role of ERβ, FGF8, FGF13 and FGFRL1 was investigated in PCa. Previous studies have suggested that ER is protective against PCa whereas FGF8 has been shown to induce PCa in transgenic mice. FGF13 and FGFRL1 are poorly understood members of the FGF and FGFR families, respectively. Transgenic mouse models were used to investigate the ability of inactivated ERβ to facilitate FGF8-induced prostate tumorigenesis. Human PCa tissue microarrays (TMAs) were used to study the expression pattern of FGF13 and FGFRL1 in PCa and the results were correlated to corresponding patient data. The targets and biological functions of FGF13 and FGFRL1 were characterized using experimental in vivo and in vitro models. The results show that deficiency of ERβ, which had been expected to have tumor suppressing capacity, seemed to influence epithelial differentiation but did not affect FGF8-induced prostate tumorigenesis. Analysis of the TMAs showed increased expression of FGF13 in PCa. The level of cytoplasmic FGF13 was associated with the PCa biochemical recurrence (BCR), demonstrated by increasing serum PSA value, and was able to act as an independent prognostic biomarker for PCa patients after RP. Expression of FGFRL1, the most recently identified FGFR, was also elevated in PCa. Cytoplasmic and nuclear FGFRL1 was associated with high Gleason score and Ki67 level whereas the opposite was true for the cell membrane FGFRL1. Silencing of FGFRL1 in PC-3M cells led to a strongly decreased growth rate of these cells as xenografts in nude mice and the experiments with PCa cell lines showed that FGFRL1 is able to modulate the FGF2- and FGF8-induced signaling pathways. The next generation sequencing (NGS) experiments with FGFRL1-silenced PC-3M cells revealed candidates for FGFRL1 target genes. In summary, these studies provide new data on the FGF/FGFR signaling pathways in normal and malignant prostate and suggest a potential role for FGF13 and FGFRL1 as novel prognostic markers for PCa patients. Keywords: FGF8, FGF13, FGFRL1, ERβ, prostate cancer, prognostic marker
Resumo:
International audience
Resumo:
International audience
Resumo:
Hepatocyte growth factor (HGF) plays a role in the improvement of cardiac function and remodeling. Their serum levels are strongly related with mortality in chronic systolic heart failure (HF). The aim of this study was to study prognostic value of HGF in acute HF, interaction with ejection fraction, renal function, and natriuretic peptides. We included 373 patients (age 76 ± 10 years, left ventricular ejection fraction [LVEF] 46 ± 14%, 48% men) consecutively admitted for acute HF. Blood samples were obtained at admission. All patients were followed up until death or close of study (>1 year, median 371 days). HGF concentrations were determined using a commercial enzyme-linked immunosorbent assay (human HGF immunoassay). The predictive power of HGF was estimated by Cox regression with calculation of Harrell C-statistic. HGF had a median of 1,942 pg/ml (interquartile rank 1,354). According to HGF quartiles, mortality rates (per 1,000 patients/year) were 98, 183, 375, and 393, respectively (p <0.001). In Cox regression analysis, HGF (hazard ratio1SD = 1.5, 95% confidence interval 1.1 to 2.1, p = 0.002) and N-terminal pro b-type natriuretic peptide (NT-proBNP; hazard ratio1SD = 1.8, 95% confidence interval 1.2 to 2.6, p = 0.002) were independent predictors of mortality. Interaction between HGF and LVEF, origin, and renal function was nonsignificant. The addition of HGF improved the predictive ability of the models (C-statistic 0.768 vs 0.741, p = 0.016). HGF showed a complementary value over NT-proBNP (p = 0.001): mortality rate was 490 with both above the median versus 72 with both below. In conclusion, in patients with acute HF, serum HGF concentrations are elevated and identify patients at higher risk of mortality, regardless of LVEF, ischemic origin, or renal function. HGF had independent and additive information over NT-proBNP.
Resumo:
Retinitis Pigmentosa (RP) is the name given to a group of hereditary diseases causing progressive and degenerative blindness. RP affects over 1 in 4000 individuals, making it the most prevalent inherited retinal disease worldwide, yet currently there is no cure. In 2011, our group released a paper detailing the protective effects of the synthetic progestin ‘Norgestrel’. A common component of the female oral contraceptive pill, Norgestrel was shown to protect against retinal cell death in two distinct mouse models of retinal degeneration: in the Balb/c light damage model and the Pde6brd10 (rd10) model. Little was known of the molecular workings of this compound however and thus this study aimed to elucidate the protective manner in which Norgestrel worked. To this aim, the 661W cone photoreceptor-like cell line and ex vivo retinal explanting was utilised. We found that Norgestrel induces a increase in neuroprotective basic fibroblast growth factor (bFGF) with subsequent downstream actions on the inhibition of glycogen synthase kinase 3β. Progesterone receptor expression was subsequently characterised in the C57 and rd10 retinas and in the 661W cell line. Norgestrel caused nuclear trafficking of progesterone receptor membrane complex one (PGRMC1) in 661W cells and thus Norgestrel was hypothesised to work primarily through the actions of PGRMC1. This trafficking was shown to be responsible for the critical upregulation of bFGF and PGRMC1- Norgestrel binding was proven to cause a neuroprotective bFGF-mediated increase in intracellular calcium. The protective properties of Norgestrel were further studied in the rd10 mouse model of retinitis pigmentosa. Using non-invasive diet supplementation (80mg/kg), we showed that Norgestrel gave significant retinal protection out to postnatal day 40 (P40). Overactive microglia have previously been shown to potentiate photoreceptor cell loss in the degenerating rd10 retina and thus we focussed on Norgestrel-mediated changes in photoreceptor-microglial crosstalk. Norgestrel acted to dampen pro-inflammatory microglial cell reactivity, decreasing chemokine (MCP1, MCP3, MIP-1α, MIP-1β) and subsequent damaging cytokine (TNFα, Il-1β) production. Critically, Norgestrel up-regulated photoreceptor-microglial, fractalkine-CX3CR1 signalling 1000-fold in the P20 rd10 mouse. Known to prevent microglial activation, we hypothesise that Norgestrel acts as a vital anti-inflammatory in the diseased retina, driving fractalkine-CX3CR1 signalling to delay retinal degeneration. This study stands to highlight some of the neuroprotective mechanisms utilised by Norgestrel in the prevention of photoreceptor cell death. We identify for the first time, not only a pro-survival pathway activated directly in photoreceptor cells, but also a Norgestreldriven mediation of an otherwise damaging microglial cell response. All taken, these results form the beginning of a case to bring Norgestrel to clinical trials, as a potential therapeutic for the treatment of RP.
Resumo:
Adjuvant-induced arthritis in rats is associated with growth failure, hypermetabolism and accelerated protein breakdown. The aim of this work was to study the effects of adjuvant-induced arthritis on GH and insulin-like growth factor-I (IGF-I). Arthritis was induced by an intradermal injection of complete Freund's adjuvant and rats were killed 18 and 22 days later. IGF-I and GH levels were measured by radioimmunoassay. Pituitary GH mRNA was analyzed by northern blot and IGF binding proteins (IGFBPs) by western blot. Arthritic rats showed a decrease in both serum and hepatic concentrations of IGF-I. On the contrary, arthritis increased the circulating IGFBPs. The serum concentration of IGF-I in the arthritic rats was negatively correlated with the body weight loss observed in these animals. Arthritis decreased the serum concentration of GH and this decrease seems to be due to an inhibition of GH synthesis, since pituitary GH mRNA content was decreased in arthritic rats (p<0.01). These data suggest that the decrease in body weight gain in arthritic rats may be, at least in part, secondary to the decrease in GH and IGF-I secretion. Furthermore, the increased serum IGFBPs may also be involved in the disease process.