1000 resultados para FE IMPURITIES
Resumo:
This paper presents a three-dimensional continuum damage mechanics-based material model which was implemented in an implicit finite element code to simulate the progressive intralaminar degradation of fibre reinforced laminates. The damage model is based on ply failure mechanisms and uses seven damage variables assigned to tensile, compressive and shear damage at a ply level. Non-linear behaviour and irreversibility were taken into account and modelled. Some issues on the numerical implementation of the damage model are discussed and solutions proposed. Applications of the methodology are presented in Part II
Resumo:
Hierarchical Fe/ZSM-5 zeolites were synthesized with a diquaternary ammonium surfactant containing a hydrophobic tail and extensively characterized by XRD, Ar porosimetry, TEM, DRUV-Vis, and UV-Raman spectroscopy. Their catalytic activities in catalytic decomposition of NO and the oxidation of benzene to phenol with NO as the oxidant were also determined. The hierarchical zeolites consist of thin sheets limited in growth in the b-direction (along the straight channels of the MFI network) and exhibit similar high hydrothermal stability as a reference Fe/ZSM-5 zeolite. Spectroscopic and catalytic investigations point to subtle differences in the extent of Fe agglomeration with the sheet-like zeolites having a higher proportion of isolated Fe centers than the reference zeolite. As a consequence, these zeolites have a somewhat lower activity in catalytic NO decomposition (catalyzed by oligomeric Fe), but display higher activity in benzene oxidation (catalyzed by monomeric Fe). The sheet-like zeolites deactivate much slower than bulk Fe/ZSM-5, which is attributed to the much lower probability of secondary reactions of phenol in the short straight channels of the sheets. The deactivation rate decreases with decreasing Fe content of the Fe/ZSM-5 nanosheets. It is found that carbonaceous materials are mainly deposited in the mesopores between the nanosheets and much less so in the micropores. This contrasts the strong decrease in the micropore volume of bulk Fe/ZSM-5 due to rapid clogging of the continuous micropore network. The formation of coke deposits is limited in the nanosheet zeolites because of the short molecular trafficking distances. It is argued that at high Si/Fe content, coke deposits mainly form on the external surface of the nanosheets. © 2012 Elsevier Inc. All rights reserved.
Resumo:
We describe extensive studies on a family of perovskite oxides that are ferroelectric and ferromagnetic at ambient temperatures. The data include x-ray diffraction, Raman spectroscopy, measurements of ferroelectric and magnetic hysteresis, dielectric constants, Curie temperatures, electron microscopy
(both scanning electron microscope and transmission electron microscopy (TEM)) studies, and both longitudinal and transverse magnetoelectric constants a33 and a31. The study extends earlier work to lower Fe, Ta, and Nb concentrations at the B-site (from 15%–20% down to 5%). The magnetoelectric
constants increase supralinearly with Fe concentrations, supporting the earlier conclusions of a key role for Fe spin clustering. The room-temperature orthorhombic C2v point group symmetry inferred from earlier x-ray diffraction studies is confirmed via TEM, and the primitive unit cell size is found to be the basic perovskite Z¼1 structure of BaTiO3, also the sequence of phase transitions with increasing temperature from rhombohedral to orthorhombic to tetragonal to cubic mimics barium titanate.
Resumo:
The effect of applied magnetic fields on the collective nonequilibrium dynamics of a strongly interacting Fe-C nanoparticle system has been investigated. It is experimentally shown that the magnetic aging diminishes to finally disappear for fields of moderate strength. The field needed to remove the observable aging behavior increases with decreasing temperature. The same qualitative behavior is observed in an amorphous metallic spin glass (Fe0.15Ni0.85)(75)P16B6Al3.
Resumo:
The effects of competing magneto-crystalline and shape anisotropies on magnetization reversal were studied in situ in arrays of sub-micron Fe/Co ellipses of compositions Fe2/Co6 and Fe8/Co3 with magnetic force microscopy (MFM). A simple model assigning magnetization values to the different types of domain structures observed in the MFM images was used to estimate the field dependence of the total magnetization of a sample. The agreement with macroscopic magnetization measurements is discussed.
Resumo:
We report observations of the dwarf star e Eri (K2V) made with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. The high sensitivity of the STIS instrument has allowed us to detect the magnetic dipole transitions of Fe XII at 1242.00 and 1349 38 Å for the first time in a star other than the Sun. The width of the stronger line at 1242.00 Å has also been measured; such measurements are not possible for the permitted lines of Fe XII in the extreme-ultraviolet. To within the accuracy of the measurements the N v and the Fe XII lines occur at their rest wavelengths. Electron densities and linewidths have been measured from other transition region lines. Together, these can be used to investigate the non-thermal energy flux in the lower and upper transition regions, which is useful in constraining possible heating processes. The Fe XII lines are also present in archival STIS spectra of other G/K-type dwarfs.
Resumo:
This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(V) with Fe(III) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil
column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to
be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the FT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing
agent for removing As even from soil with high Fe content.
Resumo:
Co3O4, Fe2O3 and a mixture of the two oxides Co–Fe (molar ratio of Co3O4/Fe2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 °C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O3 on the catalytic behaviour. The reforming activity over Fe2O3, while initially high, underwent fast deactivation. In comparison, over the Co–Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co–Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co–Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield.
Resumo:
Ultrasonic welding (consolidation) process is a rapid manufacturing process that is used to join thin layers of metal at low temperature and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, an attempt has been made to simulate the ultrasonic welding of metals by taking into account these effects (surface and volume). A phenomenological material model has been proposed, which incorporates these two effects (i.e., surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects, a friction law with variable coefficient of friction that is dependent on contact pressure, slip, temperature, and number of cycles has been derived from experimental friction tests. The results of the thermomechanical analyses of ultrasonic welding of aluminum alloy have been presented. The goal of this work is to study the effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic oscillation, and velocity of welding sonotrode on the friction work at the weld interface. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented, showing a good agreement. Copyright © 2009 by ASME.
Resumo:
AC magnetic heating of superparamagnetic Co and Fe nanoparticles for application in hyperthermia was measured to find a size of nanoparticles that would result in an optimal heating for given amplitude and frequency of ac externally applied magnetic field. To measure it, a custom-made power supply connected to a 20-turn insulated copper coil in the shape of a spiral solenoid cooled with water was used. A fiber-optic temperature sensor has been used to measure the temperature with an accuracy of 0.0001 K. The magnetic field with magnitude of 20.6 µT and a frequency of oscillation equal to 348 kHz was generated inside the coil to heat magnetic nanoparticles. The maximum specific power loss or the highest heating rate for Co magnetic nanoparticles was achieved for nanoparticles of 8.2 nm in diameter. The maximum heating rate for coated Fe was found for nanoparticles with diameter of 18.61 nm. © (2013) Trans Tech Publications, Switzerland.
Resumo:
We unravel the complex chemistry in both the neutral and ionic systems of a radio-frequency-driven atmospheric-pressure plasma in a helium-oxygen mixture (He-0.5% O) with air impurity levels from 0 to 500 ppm of relative humidity from 0% to 100% using a zero-dimensional, time-dependent global model. Effects of humid air impurity on absolute densities and the dominant production and destruction pathways of biologically relevant reactive neutral species are clarified. A few hundred ppm of air impurity crucially changes the plasma from a simple oxygen-dependent plasma to a complex oxygen-nitrogen-hydrogen plasma. The density of reactive oxygen species decreases from 10 to 10 cm, which in turn results in a decrease in the overall chemical reactivity. Reactive nitrogen species (10 cm ), atomic hydrogen and hydroxyl radicals (10-10 cm) are generated in the plasma. With 500 ppm of humid air impurity, the densities of positively charged ions and negatively charged ions slightly increase and the electron density slightly decreases (to the order of 10 cm). The electronegativity increases up to 2.3 compared with 1.5 without air admixture. Atomic hydrogen, hydroxyl radicals and oxygen ions significantly contribute to the production and destruction of reactive oxygen and reactive nitrogen species. © 2013 IOP Publishing Ltd.
Resumo:
In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium-oxygen mixture plasmas (He-O, helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species. © 2013 IOP Publishing Ltd.
Resumo:
Study of nanomechanical response of iron carbides is important because presence of iron carbides greatly influences the performance and longevity of steel components. This work contributes to the literature by exploring nanoindentation of nanocrystalline Fe3C and tetrahedral-Fe4C using molecular dynamics simulation. The chemical interactions of iron and carbon were described through an analytical bond order inter-atomic potential (ABOP) energy function. The indentations were performed at an indentation speed of 50 m/sec and a repeat trial was performed at 5 m/sec. Load-displacement (P-h) curve for both these carbides showed residual indentation depth and maximum indentation depth (hf/hmax) ratio to be higher than 0.7 i.e. a circumstance where Oliver and Pharr method was not appropriate to be applied to evaluate the material properties. Alternate evaluation revealed Fe3C to be much harder than Fe4C. Gibbs free energy of formation and radial distribution function, coupled with state of the average local temperature and von Mises stresses indicate the formation of a new phase of iron-carbide. Formation of this newer phase was found to be due to deviatoric strain rather than the high temperature induced in the substrate during nanoindentation