958 resultados para Export of nutrients


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transition from last glacial to deglacial and subsequently to modern interglacial climate conditions was accompanied by abrupt shifts in the palaeoceanographic setting in the subpolar North Atlantic. Knowledge about the role that sea ice coverage played during these rapid climate reversals is limited since most marine sediment cores from the higher latitudes provide only a coarse temporal resolution and often poorly preserved microfossils. Here we present a highly resolved reconstruction of sea ice conditions that characterised the eastern Fram Strait - a key area for water mass exchange between the Arctic Ocean and the North Atlantic - for the past 30 ka BP. This reconstruction is based on the distribution of the sea ice biomarker IP25 and phytoplankton derived biomarkers in a sediment core from the continental slope of western Svalbard. During the late glacial (30 ka to 19 ka BP), recurrent advances and retreats of sea ice characterised the study area and point to a hitherto less considered oceanic (and/or atmospheric) variability. A long-lasting perennial sea ice coverage in eastern Fram Strait persisted only at the very end of the Last Glacial Maximum (i.e. from 19.2 to 17.6 ka BP) and was abruptly reduced at the onset of Heinrich Event 1 - coincident with or possibly even inducing the collapse of the Atlantic Meridional Overturning Circulation (AMOC). Further maximum sea ice conditions prevailed during the Younger Dryas cooling event and support the assumption of an AMOC reduction due to increased formation and export of Arctic sea ice through Fram Strait. A significant retreat of sea ice and sea surface warming are observed for the Early Holocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coccolithophores are calcifying marine phytoplankton of the class Prymnesiophyceae. They are considered to play an import role in the global carbon cycle through the production and export of organic carbon and calcite. We have compiled observations of global coccolithophore abundance from several existing databases as well as individual contributions of published and unpublished datasets. We estimate carbon biomass using standardised conversion methods and provide estimates of uncertainty associated with these values. The database contains 58 384 individual observations at various taxonomic levels. This corresponds to 12 391 observations of total coccolithophore abundance and biomass. The data span a time period of 1929-2008, with observations from all ocean basins and all seasons, and at depths ranging from the surface to 500 m. Highest biomass values are reported in the North Atlantic, with a maximum of 501.7 ?gCl-1. Lower values are reported for the Pacific (maximum of 79.4 ?gCl-1) and Indian Ocean (up to 178.3 ?gCl-1). Coccolithophores are reported across all latitudes in the Northern Hemisphere, from the Equator to 89degN, although biomass values fall below 3 ?gCl-1 north of 70degN. In the Southern Hemisphere, biomass values fall rapidly south of 50degS, with only a single non-zero observation south of 60degS. Biomass values show a clear seasonal cycle in the Northern Hemisphere, reaching a maximum in the summer months (June-July). In the Southern Hemisphere the seasonal cycle is less evident, possibly due to a greater proportion of low-latitude data.