904 resultados para Experimental measurements


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents measurements of wall heat flux and flow structure in a canonical film cooling configuration with Mach 2.3 core flow in which the coolant is injected parallel to the wall through a two-dimensional louver. Four operating conditions are investigated: no film (i.e. flow over a rearward-facing step), subsonic film, pressure-matched film, and supersonic film. The overall objective is to provide a set of experimental data with well characterized boundary conditions that can be used for code validation. The results are compared to RANS and LES simulations which overpredict heat transfer in the subsonic film cases and underpredict heat transfer in supersonic cases after film breakdown. The thesis also describes a number of improvements that were made to the experimental facility including new Schlieren optics, a better film heater, more data at more locations, and a verification of the heat flux measurement hardware and data reduction methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity coefficients at infinite dilution, gamma(infinity)(13), of 55 organic solutes and water in three ionic liquids with the common cation 1-butyl-3-methylimidazolium and the polar anions Cl--,Cl- [CH3SO3](-) and [(CH3)(2)PO4](-), were determined by (gas + liquid) chromatography at four temperatures in the range (358.15 to 388.15) K for alcohols and water, and T = (398.15 to 428.15) K for the other organic solutes including alkanes, cycloalkanes, alkenes, cycloalkenes, alkynes, ketones, ethers, cyclic ethers, aromatic hydrocarbons, esters, butyraldehyde, acetonitrile, pyridine, 1-nitropropane and thiophene. From the experimental gamma(infinity)(13) values, the partial molar excess Gibbs free energy, (G) over bar (E infinity)(m), enthalpy (H) over bar (E infinity)(m), and entropy (S) over bar (E infinity)(m), at infinite dilution, were estimated in order to provide more information about the interactions between the solutes and the ILs. Moreover, densities were measured and (gas + liquid) partition coefficients (KL) calculated. Selectivities at infinite dilution for some separation problems such as octane/benzene, cyclohexane/benzene and cyclohexane/thiophene were calculated using the measured gamma(infinity)(13), and compared with literature values for N-methyl-2-pyrrolidinone (NMP), sulfolane, and other ionic liquids with a common cation or anion of the ILs here studied. From the obtained infinite dilution selectivities and capacities, it can be concluded that the ILs studied may replace conventional entrainers applied for the separation processes of aliphatic/aromatic hydrocarbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Looking for a better knowledge concerning water and ionic liquids (ILs) interactions, a systematic study of the activity coefficients of water in pyridinium, pyrrolidinium and piperidinium-based ILs at 298.2 K is here presented based on water activity measurements. Additionally, the study of the structural effects of the pyridinium-based cation is also pursued. The results show that non-aromatic ILs are interacting more with water than aromatic ones, and among the ortho, meta and para isomers of 1-butyl-methylpyridinium chloride, the ortho position confers a more hydrophilic character to that specific IL. The physicalchemistry of the solutions was interpreted based on dissociation constants, natural bond orbitals and excess enthalpies providing a sound basis for the interpretation of the experimental observations. These results show that hydrogen bonding controls the behavior of these systems, being the anion-water one of the most relevant interactions, but modulated by the anionecation interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To evaluate, in vitro, the effect of brushing with a Ricinus communis -based experimental toothpaste on color stability and surface roughness of artificial teeth. Methods: Ninety artificial teeth (maxillary central incisors) in different shades, light and dark (NatusDent Triple Pressing, Dentbras) were used. Initial color (Spectrophotometer Easyshade, VITA) and surface roughness (Rugosimeter Surfcorder SE 1700, Kosakalab) readouts were performed. After baseline measurements, samples were assigned to 10 groups (n=9) according to the artificial tooth shade and type of toothpaste used during the mechanical brushing test (Pepsodent, MAVTEC): Sorriso Dentes Brancos – SDB, Colgate Luminous White - CLW (Colgate-Palmolive), Close up White Now - CWN (Unilever), Trihydral - THL (Perland Pharmacos) and Ricinus communis - RCE (Experimental). After 29,200 cycles of brushing, corresponding to 2 years of brushing by a healthy individual, new color and roughness readouts of the specimens were performed. Data (before and after the tests) were statistically analyzed (2-way repeated measures ANOVA, Tukey, p<0.05). Results: RCE toothpaste produced the greatest color stability for dark tooth shade and the second best color stability for light tooth shade. For surface roughness alteration, there was no difference (p>0.05) for any tested toothpaste regardless of tooth shade. Conclusions: The experimental Ricinus communis toothpaste did not cause color and surface roughness alteration in the artificial teeth, and it may be considered a suitable option for denture cleaning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International audience

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of building envelopes and roofing systems significantly depends on accurate knowledge of wind loads and the response of envelope components under realistic wind conditions. Wind tunnel testing is a well-established practice to determine wind loads on structures. For small structures much larger model scales are needed than for large structures, to maintain modeling accuracy and minimize Reynolds number effects. In these circumstances the ability to obtain a large enough turbulence integral scale is usually compromised by the limited dimensions of the wind tunnel meaning that it is not possible to simulate the low frequency end of the turbulence spectrum. Such flows are called flows with Partial Turbulence Simulation.^ In this dissertation, the test procedure and scaling requirements for tests in partial turbulence simulation are discussed. A theoretical method is proposed for including the effects of low-frequency turbulences in the post-test analysis. In this theory the turbulence spectrum is divided into two distinct statistical processes, one at high frequencies which can be simulated in the wind tunnel, and one at low frequencies which can be treated in a quasi-steady manner. The joint probability of load resulting from the two processes is derived from which full-scale equivalent peak pressure coefficients can be obtained. The efficacy of the method is proved by comparing predicted data derived from tests on large-scale models of the Silsoe Cube and Texas-Tech University buildings in Wall of Wind facility at Florida International University with the available full-scale data.^ For multi-layer building envelopes such as rain-screen walls, roof pavers, and vented energy efficient walls not only peak wind loads but also their spatial gradients are important. Wind permeable roof claddings like roof pavers are not well dealt with in many existing building codes and standards. Large-scale experiments were carried out to investigate the wind loading on concrete pavers including wind blow-off tests and pressure measurements. Simplified guidelines were developed for design of loose-laid roof pavers against wind uplift. The guidelines are formatted so that use can be made of the existing information in codes and standards such as ASCE 7-10 on pressure coefficients on components and cladding.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indoor environmental conditions in classrooms, in particular temperature and indoor air quality, influence students’ health, attitude and performance. In recent years, several studies regarding indoor environmental quality of classrooms were published and natural ventilation proved to have great potential, particularly in southern European climate. This research aimed to evaluate indoor environmental conditions in eight schools and to assess their improvement potential by simple natural ventilation strategies. Temperature, relative humidity and carbon dioxide concentration were measured in 32 classrooms. Ventilation performance of the classrooms was characterized using two techniques, first by fan pressurization measurements of the envelope airtightness and later by tracer gas measurements of the air change rate assuming different envelope conditions. A total of 110 tracer gas measurements were made and the results validated ventilation protocols that were tested afterward. The results of the ventilation protocol implementation were encouraging and, overall, a decrease on the CO2 concentration was observed without modifying the comfort conditions. Nevertheless, additional measurements must be performed for winter conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shearing is the process where sheet metal is mechanically cut between two tools. Various shearing technologies are commonly used in the sheet metal industry, for example, in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material. The constant development of sheet metals toward higher strength and formability leads to increased forces on the shearing equipment and tools. Shearing of new sheet materials imply new suitable shearing parameters. Investigations of the shearing parameters through live tests in the production are expensive and separate experiments are time consuming and requires specialized equipment. Studies involving a large number of parameters and coupled effects are therefore preferably performed by finite element based simulations. Accurate experimental data is still a prerequisite to validate such simulations. There is, however, a shortage of accurate experimental data to validate such simulations. In industrial shearing processes, measured forces are always larger than the actual forces acting on the sheet, due to friction losses. Shearing also generates a force that attempts to separate the two tools with changed shearing conditions through increased clearance between the tools as result. Tool clearance is also the most common shearing parameter to adjust, depending on material grade and sheet thickness, to moderate the required force and to control the final sheared edge geometry. In this work, an experimental procedure that provides a stable tool clearance together with accurate measurements of tool forces and tool displacements, was designed, built and evaluated. Important shearing parameters and demands on the experimental set-up were identified in a sensitivity analysis performed with finite element simulations under the assumption of plane strain. With respect to large tool clearance stability and accurate force measurements, a symmetric experiment with two simultaneous shears and internal balancing of forces attempting to separate the tools was constructed. Steel sheets of different strength levels were sheared using the above mentioned experimental set-up, with various tool clearances, sheet clamping and rake angles. Results showed that tool penetration before fracture decreased with increased material strength. When one side of the sheet was left unclamped and free to move, the required shearing force decreased but instead the force attempting to separate the two tools increased. Further, the maximum shearing force decreased and the rollover increased with increased tool clearance. Digital image correlation was applied to measure strains on the sheet surface. The obtained strain fields, together with a material model, were used to compute the stress state in the sheet. A comparison, up to crack initiation, of these experimental results with corresponding results from finite element simulations in three dimensions and at a plane strain approximation showed that effective strains on the surface are representative also for the bulk material. A simple model was successfully applied to calculate the tool forces in shearing with angled tools from forces measured with parallel tools. These results suggest that, with respect to tool forces, a plane strain approximation is valid also at angled tools, at least for small rake angles. In general terms, this study provide a stable symmetric experimental set-up with internal balancing of lateral forces, for accurate measurements of tool forces, tool displacements, and sheet deformations, to study the effects of important shearing parameters. The results give further insight to the strain and stress conditions at crack initiation during shearing, and can also be used to validate models of the shearing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores a new interpretation of experiments on foil rolling. The assumption that the roll remains convex is relaxed so that the strip profile may become concave, or thicken in the roll gap. However, we conjecture that the concave profile is associated with phenomena which occur after the rolls have stopped. We argue that the yield criterion must be satisfied in a nonconventional manner if such a phenomenon is caused plastically. Finite element analysis on an extrusion problem appears to confirm this conjecture.