988 resultados para Eurimbula Site 1


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ammonium (NH4+) concentration profiles in piston-core sediments of the Carolina Rise and Blake Ridge generally have linear concentration profiles within the sulfate reduction zone (Borowski, 1998). Deep Sea Drilling Project (DSDP) Site 533, located on the Blake Ridge, also displayed a linear ammonium concentration profile through the sulfate reduction zone and the profile linearity continues into the upper methanogenic zone to a depth of ~200 meters below seafloor (mbsf), where the first methane gas hydrates probably occur (Jenden and Gieskes, 1983, doi:10.2973/dsdp.proc.76.114.1983; Kvenvolden and Barnard, 1983, doi:10.2973/dsdp.proc.76.106.1983). Sediments from the Ocean Drilling Program (ODP) Leg 164 deep holes (Sites 994, 995, and 997) also exhibit linear ammonium profiles above the top of the gas hydrate zone (~200 mbsf) (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996). We hypothesized that a possible cause of linear ammonium profiles was diffusion of ammonium from a concentrated ammonium source at depth. We further reasoned that if this ammonium were produced by microbial fermentation reactions at depth, that a comparison of the nitrogen isotopic composition of sedimentary organic nitrogen and the nitrogen with pore-water ammonium would test this hypothesis. Convergence with depth of d15N values of the nitrogen source (sedimentary organic matter) and the nitrogen product (dissolved NH4+) would strongly suggest that ammonium was produced within a particular depth zone by microbial fermentation reactions. Here, we report d15N values of pore-water ammonium from selected interstitial water (IW) samples from Site 997, sampled during ODP Leg 164.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Late Miocene-Recent micropaleontological and geochemical records from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) indicate that increase and decrease in abundance of siliceous plankton may be controlled mainly by the input of nutrients derived from land and provided by upwelling. A high export production event - a "biogenic bloom" event - occurred in the southern SCS between 12 and 6 Ma. During this period, high ratios of smectite/(illite + chlorite), smectite/quartz and Al/K indicate a high weathering intensity of the Asian continent, possibly due to the intensification of the East Asian Summer Monsoon (EASM), which may have increased the net flux of nutrients to the ocean, both directly through terrestrial input and indirectly through upwelling activity. A drop in Ba/Ti, Al/Ti and Ca/Ti values around 6 Ma may indicate a lowering of productivity, possibly due to the large consumption of sea surface nutrients by the "biogenic bloom". Alternatively, it may indicate a shift in terrigenous input source area. At about 5.4 Ma, a decrease in weathering intensity, as indicated by a sudden decrease in the values of smectite/(illite + chlorite), smectite/quartz and Al/K, might have led to a sudden decrease of terrestrial nutrient input to the SCS. We suggest that the biogenic bloom ended when nutrients in surface waters were exhausted, because of a decrease in supply as well as a decrease in upwelling intensity due to weakening of the EASM. As a result, radiolarians were absent in the studied area between ~6 and 3.2 Ma. At ~3.2 Ma, radiolarians began to recover, possibly because the start of Northern Hemispheric glaciation and the rapid uplift of the Tibet Plateau led to intensification of the East Asian monsoon. After the Mid-Pleistocene Climate Transition at 0.9 Ma, the abundance and mass accumulation rates of radiolarians increased, probably as a result of increased upwelling activity driven by the increasing intensity of the summer monsoon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Uk'37 sea-surface temperature (SST) estimates obtained at ~2.5-k.y. resolution from Ocean Drilling Program Site 1020 show glacial-interglacial cyclicity with an amplitude of 7°-10°C over the last 780 k.y. This record shows a similar pattern of variability to another alkenone-based SST record obtained previously from the Santa Barbara Basin. Both records show that oxygen isotope Stage (OIS) 5.5 was warmer by ~3°C relative to the present and that glacial Uk'37 temperatures warm in advance of deglaciation, as inferred from benthic d18O records. The alkenone-based SST record at Site 1020 is longer than previously published work along the California margin. We show that warmer than present interglacial stages have occurred frequently during the last 800 k.y. Alkenone concentrations, a proxy for coccolithophorid productivity, indicate that sedimentary marine organic carbon content has also varied significantly over this interval, with higher contents during interglacial periods. A baseline shift to warmer SST and greater alkenone content occurs before OIS 13. We compare our results with those from previous multiproxy studies in this region and conclude that SST has increased by ~5°C since the last glacial period (21 ka). Our data show that maximum alkenone SSTs occur simultaneously with minimum ice volume at Site 1020, which is consistent with data from farther south along the margin. The presence of sea ice in the glacial northeast Pacific, the extent of which is inferred from locations of ice-rafted debris, provides further support for our notion of cold surface water within the northern California Current system, averaging 7°-8°C cooler during peak glacial conditions. The cooling of surface water during glacial stages most likely did not result from enhanced upwelling because alkenone concentrations and terrestrial redwood pollen assemblages are consistently lower during glacial periods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The distribution of acyclic and cyclic biphytanediols, the putative breakdown products of glycerol dialkyl glycerol tetraethers (GDGTs), was investigated for recent marine sediments from Nankai Trough, offshore Kii Peninsula. The most abundant diol is tricyclic biphytanediol, whose relative abundance is in the range 32-46%. Its carbon skeleton, with two cyclopentane rings and one cyclohexane ring, is the same as would be expected via a crenarchaeol origin. Based on the structure of crenarchaeol, the tricyclic biphytanediol is considered to be derived not only from crenarchaeol but also from other unknown sources. The ring distributions of the biphytanediols are different from those of the biphytanes obtained from intact polar lipids by way of chemical treatment, suggesting that biphytanediols are not solely the diagenetic products of in situ GDGTs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abundant and various diagenetic carbonates were recovered from a 1084-m-thick, Quaternary to lower Miocene section at ODP Site 799 in the Japan Sea. Petrographic, XRD, SEM, EDS-chemical, and isotopic analyses revealed wide variations in occurrence and textural relations and complex mineralogy and chemistry. Diagenetic carbonates include calcite, calcium-rich rhodochrosite, iron- and manganese-rich magnesite, iron- and manganese-rich dolomite and ankerite, and iron- and manganeserich lansfordite (hydrous Mg-carbonate). Rhodochrosite commonly occurs as small, solid nodules and semi-indurated, thin layers in bioturbated, mottled sediments of Units I and II (late Miocene to Quaternary). Lansfordite occurs as unindurated nodules and layers in Unit II (late Miocene and Pliocene), whereas magnesite forms indurated beds a few centimeters thick in slightly bioturbated-to-faintly laminated sediments of Unit III (middle and late Miocene). Some rhodochrosite nodules have dark-colored, pyritic cores, and some pyrite-rhodochrosite nodules are overgrown by and included within magnesite beds. Dolomite and ankerite tend to form thick beds (>10 cm) in bedded to laminated sediments of Units III, IV, and V (early to late Miocene). Calcite occurs sporadically throughout the Site 799 sediments. The d18O values of carbonates and the interstitial waters, and the measured geothermal gradient indicate that almost all of the Site 799 carbonates are not in isotopic equilibrium with the ambient waters, but were precipitated in the past when the sediments were at shallower depths. Depths of precipitation obtained from the d18O of carbonates span from 310 to 510 mbsf for magnesite and from 60 to 580 mbsf for dolomite-ankerite. Rhodochrosite and calcite are estimated to have formed within sediments at depths shallower than 80 mbsf. Diagenetic history in the Site 799 sediments have been determined primarily by the environment of deposition; in particular, by the oxidation-reduction state of the bottom waters and the alkalinity level of the interstitial waters. Under the well-oxygenated bottom-water conditions in the late Miocene and Pliocene, manganese initially accumulated on the seafloor as hydrogenous oxides and subsequently was mobilized and reprecipitated as rhodochrosite within the shallow sulfate-reduction, sub-oxic zone. Precipitation of lansfordite occurred in the near-surface sediments with abundant organic carbon and an extremely high alkalinity during the latest Miocene and Pliocene. The lansfordite was transformed to magnesite upon burial in the depth interval 310 to 510 mbsf. Dolomite first precipitated at shallow depths in Mn-poor, anoxic, moderately biocalcareous sediments of early to late Miocene. With increasing temperature and depth, the dolomite recrystallized and reequilibrated with ambient waters at depths below about 400 mbsf.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Today the deep western boundary current (DWBC) east of New Zealand is the most important route for deep water entering the Pacific Ocean. Large-scale changes in deep water circulation patterns are thought to have been associated with the development of the East Antarctic Ice Sheet (EAIS) close to the main source of bottom water for the DWBC. Here we reconstruct the changing speed of the southwest Pacific DWBC during the middle Miocene from ~15.5-12.5 Ma, a period of significant global ice accumulation associated with EAIS growth. Sortable silt mean grain sizes from Ocean Drilling Program Site 1123 reveal variability in the speed of the Pacific inflow on the timescale of the 41 kyr orbital obliquity cycle. Similar orbital period flow changes have recently been demonstrated for the Pleistocene epoch. Collectively, these observations suggest that a strong coupling between changes in the speed of the deep Pacific inflow and high-latitude climate forcing may have been a persistent feature of the global thermohaline circulation system for at least the past 15 Myr. Furthermore, long-term changes in flow speed suggest an intensification of the DWBC under an inferred increase in Southern Component Water production. This occurred at the same time as decreasing Tethyan outflow and major EAIS growth between ~15.5 and 13.5 Ma. These results provide evidence that a major component of the deep thermohaline circulation was associated with the middle Miocene growth of the EAIS and support the view that this time interval represents an important step in the development of the Neogene icehouse climate.