980 resultados para Euclidean Gravity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We argued in arXiv: 1408.0624 that the quartic scalar field in AdS has features that could be instructive for answering the gravitational stability question of AdS. Indeed, the conserved charges identified there have recently been observed in the full gravity theory as well. In this paper, we continue our investigation of the scalar field in AdS and provide evidence that in the Two-Time Formalism (TTF), even for initial conditions that are far from quasi-periodicity, the energy in the higher modes at late times is exponentially suppressed in the mode number. Based on this and some related observations, we argue that there is no thermalization in the scalar TTF model within time-scales that go as similar to 1/epsilon(2), where epsilon measures the initial amplitude (with only low-lying modes excited). It is tempting to speculate that the result holds also for AdS collapse. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider the issue of the Froissart bound on the high energy behaviour of total cross sections. This bound, originally derived using principles of analyticity of scattering amplitudes, is seen to be satisfied by all the available experimental data on total hadronic cross sections. At strong coupling, gauge/gravity duality has been used to provide some insights into this behaviour. In this work, we find the subleading terms to the so-derived Froissart bound from AdS/CFT. We find that a (ln s/s0) term is obtained, with a negative coefficient. We see that the fits to the currently available data confirm improvement in the fits due to the inclusion of such a term, with the appropriate sign. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molten A356 aluminum alloy flowing on an oblique plate is water cooled from underneath. The melt partially solidifies on plate wall with continuous formation of columnar dendrites. These dendrites are continuously sheared off into equiaxed/fragmented grains and carried away with the melt by producing semisolid slurry collected at plate exit. Melt pouring temperature provides required solidification whereas plate inclination enables necessary shear for producing slurry of desired solid fraction. A numerical model concerning transport equations of mass, momentum, energy and species is developed for predicting velocity, temperature, macrosegregation and solid fraction. The model uses FVM with phase change algorithm, VOF and variable viscosity. The model introduces solid phase movement with gravity effect as well. Effects of melt pouring temperature and plate inclination on hydrodynamic and thermo-solutal behaviors are studied subsequently. Slurry solid fractions at plate exit are 27%, 22%, 16%, and 10% for pouring temperatures of 620 degrees C, 625 degrees C, 630 degrees C, and 635 degrees C, respectively. And, are 27%, 25%, 22%, and 18% for plate inclinations of 30, 45, 60, and 75, respectively. Melt pouring temperature of 625 degrees C with plate inclination of 60 generates appropriate quality of slurry and is the optimum. Both numerical and experimental results are in good agreement with each other. (C) 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We give strong numerical evidence that a self-interacting probe scalar field in AdS, with only a few modes turned on initially, will undergo fast thermalization only if it is above a certain energetic threshold. Below the threshold the energy stays close to constant in a few modes for a very long time instead of cascading quickly. This indicates the existence of a Strong Stochasticity Threshold (SST) in holography. The idea of SST is familiar from certain statistical mechanical systems, and we suggest that it exists also in AdS gravity. This would naturally reconcile the generic nonlinear instability of AdS observed by Bizon and Rostworowski, with the Fermi-Pasta-Ulam-Tsingou-like quasiperiodicity noticed recently for some classes of initial conditions. We show that our simple setup captures many of the relevant features of the full gravity-scalar system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study contributes new constraints on, and definitions of, the reconstructed plate margins of India and Madagascar based on flexural isostasy along the Western Continental Margin of India (WCMI) and the Eastern Continental Margin of Madagascar (ECMM). We have estimated the nature of isostasy and crustal geometry along the two margins, and have examined their possible conjugate structure. Here we utilize elastic thickness (Te) and Moho depth data as the primary basis for the correlation of these passive margins. We employ the flexure inversion technique that operates in spatial domain in order to estimate the spatial variation of effective elastic thickness. Gravity inversion and flexure inversion techniques are used to estimate the configuration of the Moho/Crust-Mantle Interface that reveals regional correlations with the elastic thickness variations. These results correlate well with the continental and oceanic segments of the Indian and African plates. The present study has found a linear zone of anomalously low-Te (1-5 km) along the WCMI (similar to 1680 km), which correlates well with the low-Te patterns obtained all along the ECMM. We suggest that the low-Te zones along the WCMI and ECMM represent paleo-rift inception points of lithosphere thermally and mechanically weakened by the combined effects of the Marion hotspot and lithospheric extension due to rifting. We have produced an India-Madagascar paleo-fit representing the initial phase of separation based on the Te estimates of the rifted conjugate margins, which is confirmed by a close-fit correlation of Moho geometry and bathymetry of the shelf margins. The matching of tectonic lineaments, lithologies and geochronological belts between India and Madagascar provide an additional support for the present plate reconstruction. (C) 2014 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative alpha-entropies (denoted I-alpha), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative alpha-entropies behave like squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative alpha-entropies on closed and convex sets are shown to exist. Such minimizations generalize the maximum Renyi or Tsallis entropy principle. The minimizing probability distribution (termed forward I-alpha-projection) for a linear family is shown to obey a power-law. Other results in connection with statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related minimization problem of interest in robust statistics that leads to a reverse I-alpha-projection is studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary atomization characteristics of burning bicomponent (ethanol-water) droplets containing titania nanoparticles (NPs) in dilute (0.5% and 1 wt.%) and dense concentrations (5% and 7.5 wt.%) are studied experimentally at atmospheric pressure under normal gravity. It is observed that both types of nanofuel droplets undergo distinct modes of secondary breakup, which are primarily responsible for transporting particles from the droplet domain to the flame zone. For dilute nanosuspensions, disruptive response is characterized by low intensity atomization modes that cause small-scale localized flame distortion. In contrast, the disruption behavior at dense concentrations is governed by high intensity bubble ejections, which result in severe disruption of the flame envelope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let be a set of points in the plane. A geometric graph on is said to be locally Gabriel if for every edge in , the Euclidean disk with the segment joining and as diameter does not contain any points of that are neighbors of or in . A locally Gabriel graph(LGG) is a generalization of Gabriel graph and is motivated by applications in wireless networks. Unlike a Gabriel graph, there is no unique LGG on a given point set since no edge in a LGG is necessarily included or excluded. Thus the edge set of the graph can be customized to optimize certain network parameters depending on the application. The unit distance graph(UDG), introduced by Erdos, is also a LGG. In this paper, we show the following combinatorial bounds on edge complexity and independent sets of LGG: (i) For any , there exists LGG with edges. This improves upon the previous best bound of . (ii) For various subclasses of convex point sets, we show tight linear bounds on the maximum edge complexity of LGG. (iii) For any LGG on any point set, there exists an independent set of size .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, the dry sliding wear behavior of rheocast A356 Al alloys, cast using a cooling slope, as well as gravity cast A356 Al alloy have been investigated at a low sliding speed of 1ms(-1), against a hardened EN 31 disk at different loads. The wear mechanism involves microcutting-abrasion and adhesion at lower load for all of the alloys studied in the present work. On the other hand, at higher load, mainly adhesive wear along with oxide formation is observed for gravity cast A356 Al alloy and rheocast A356 Al alloy, cast using a 45 degrees slope angle. Unlike other alloys, 60 degrees slope rheocast A356 Al alloy is found to undergo mainly abrasive wear at higher load. Accordingly, the rheocast sample, cast using a 60 degrees cooling slope, exhibits a remarkably lower wear rate at higher load compared to gravity cast and 45 degrees slope rheocast samples. This is attributed to the dominance of abrasive wear at higher load in the case of rheocast A356 Al alloy cast using a 60 degrees slope. The presence of finer and more spherical primary Al grain morphology is found to resist adhesive wear in case of 60 degrees cooling slope processed rheocast alloy and thereby delay the transition of the wear regime from normal wear to severe wear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the deflected mirage mediation supersymmetry breaking (DMMSB) scenario, which combines three supersymmetry breaking scenarios, namely anomaly mediation, gravity mediation and gauge mediation using the one-loop renormalization group invariants (RGIs). We examine the effects on the RGIs at the threshold where the gauge messengers emerge, and derive the supersymmetry breaking parameters in terms of the RGIs. We further discuss whether the supersymmetry breaking mediation mechanism can be determined using a limited set of invariants, and derive sum rules valid for DMMSB below the gauge messenger scale. In addition we examine the implications of the measured Higgs mass for the DMMSB spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluate the contribution of chiral fermions in d = 2, 4, 6, chiral bosons, a chiral gravitino like theory in d = 2 and chiral gravitinos in d = 6 to all the leading parity odd transport coefficients at one loop. This is done by using finite temperature field theory to evaluate the relevant Kubo formulae. For chiral fermions and chiral bosons the relation between the parity odd transport coefficient and the microscopic anomalies including gravitational anomalies agree with that found by using the general methods of hydrodynamics and the argument involving the consistency of the Euclidean vacuum. For the gravitino like theory in d = 2 and chiral gravitinos in d = 6, we show that relation between the pure gravitational anomaly and parity odd transport breaks down. From the perturbative calculation we clearly identify the terms that contribute to the anomaly polynomial, but not to the transport coefficient for gravitinos. We also develop a simple method for evaluating the angular integrals in the one loop diagrams involved in the Kubo formulae. Finally we show that charge diffusion mode of an ideal 2 dimensional Weyl gas in the presence of a finite chemical potential acquires a speed, which is equal to half the speed of light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Granular flows occur widely in nature and industry, yet a continuum description that captures their important features is yet not at hand. Recent experiments on granular materials sheared in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the stress rise nearly exponentially with depth. Here we show, using particle dynamics simulations and imaging experiments, that the stress anomaly arises from a remarkable vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor vortex in a fluid. We show that the vortex is driven by a combination of shear-induced dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an important feature of granular mechanics, but not adequately incorporated in existing models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structures with governing equations having identical inertial terms but somewhat differing stiffness terms can be termed flexurally analogous. An example of such a structure includes an axially loaded non-uniform beam and an unloaded uniform beam, for which an exact solution exists. We find that there exist shared eigenpairs (frequency and mode shapes) for a particular mode between such structures. Non-uniform beams with uniform axial loads, gravity loaded beams and rotating beams are considered and shared eigenpairs with uniform beams are found. In general, the derived flexural stiffness functions (FSF's) for the non-uniform beams required for the existence of shared eigenpair have internal singularities, but some of the singularities can be removed by an appropriate selection of integration constants using the theory of limits. The derived functions yield an insight into the relationship between the axial load and flexural stiffness of axially loaded beam structures. The derived functions can serve as benchmark solutions for numerical methods. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gravity mediated supersymmetry breaking becomes comparable to gauge mediated supersymmetry breaking contributions when messenger masses are close to the GUT scale. By suitably arranging the gravity contributions, one can modify the soft supersymmetry breaking sector to generate a large stop mixing parameter and a light Higgs mass of 125 GeV. In this kind of hybrid models, however, the nice features of gauge mediation like flavor conservation, etc. are lost. To preserve the nice features, gravitational contributions should become important for lighter messenger masses and should be important only for certain fields. This is possible when the hidden sector contains multiple (at least two) spurions with hierarchical vacuum expectation values. In this case, the gravitational contributions can be organized to be ``just right.'' We present a complete model with two spurion hidden sector where the gravitational contribution is from a warped flavor model in a Randall-Sundrum setting. Along the way, we present simple expressions to handle renormalization group equations when supersymmetry is broken by two different sectors at two different scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were performed, in a terrestrial environment, to study the migration and interaction of two drops with different diameters in matrix liquid under temperature gradient field. Pure soybean oil and silicon oil were used as matrix liquid and the drop liquid, respectively. The information on the motions of two drops was recorded by CCD camera system in the experiments to analyze the trajectories and velocities of the drops. Our experiments showed that, upon two drops approaching each other, the influence of the larger drop on the motion of the smaller one became significant. Meanwhile the smaller drop had a little influence on the larger one all the time. The oscillation of migration velocities of both drops was observed as they were approaching. For a short period the smaller drop even moved backward when it became side by side with the larger one during the migration. Although our experimental results on the behavior of two drops are basically consistent with the theoretical predictions, there are also apparent differences. 2006 Elsevier Ltd. All rights reserved. Keywords: Thermocapillary migration; Drop; Interaction; Oscillation 1. Introduction A bubble or drop will move when placed in another fluid with temperature gradient. This motion happens as a consequence of the variation of interfacial tension with temperature. Such a phenomenon is already known as Marangoni migration problem. With the development of microgravity science, bubble dynamics and droplet dynamics became a hot point problem of research because this investigation is very important for basic research as well as for applications in reduced gravity environment, such as space material science, chemical engineering and so on. Young et al. first investigated the thermocapillary migration of