971 resultados para Escherichia coli cells
Resumo:
We evaluated the pharmacokinetics and therapeutic efficacy of ampicillin combined with sulbactam in a rabbit model of meningitis due to a beta-lactamase-producing strain of Escherichia coli K-1. Ceftriaxone was used as a comparison drug. The MIC and MBC were 32 and greater than 64 micrograms/ml (ampicillin), greater than 256 and greater than 256 micrograms/ml (sulbactam), 2.0 and 4.0 micrograms/ml (ampicillin-sulbactam [2:1 ratio, ampicillin concentration]) and 0.125 and 0.25 micrograms/ml (ceftriaxone). All antibiotics were given by intravenous bolus injection in a number of dosing regimens. Ampicillin and sulbactam achieved high concentrations in cerebrospinal fluid (CSF) with higher dose regimens, but only moderate bactericidal activity compared with that of ceftriaxone was obtained. CSF bacterial titers were reduced by 0.6 +/- 0.3 log10 CFU/ml/h with the highest ampicillin-sulbactam dose used (500 and 500 mg/kg of body weight, two doses). This was similar to the bactericidal activity achieved by low-dose ceftriaxone (10 mg/kg), while a higher ceftriaxone dose (100 mg/kg) produced a significant increase in bactericidal activity (1.1 +/- 0.4 log10 CFU/ml/h). It appears that ampicillin-sulbactam, despite favorable CSF pharmacokinetics in animals with meningitis, may be of limited value in the treatment of difficult-to-treat beta-lactamase-producing bacteria, against which the combination shows only moderate in vitro activity.
Resumo:
We evaluated the pharmacokinetics and therapeutic efficacy of piperacillin combined with tazobactam, a novel beta-lactamase inhibitor, in experimental meningitis due to a beta-lactamase-producing strain of K1-positive Escherichia coli. Different doses of piperacillin and tazobactam, as single agents and combined (8:1 ratio; dosage range, 40/5 to 200/25 mg/kg per h), and of ceftriaxone were given to experimentally infected rabbits by intravenous bolus injection followed by a 5-h constant infusion. The mean (+/- standard deviation) rates for penetration into the cerebrospinal fluid of infected animals after coadministration of both drugs were 16.6 +/- 8.4% for piperacillin and 32.5 +/- 12.6% for tazobactam. Compared with either agent alone, combination treatment resulted in significantly better bactericidal activity in the cerebrospinal fluid. The bactericidal activity of piperacillin-tazobactam was dose dependent: cerebrospinal fluid bacterial titers were reduced by 0.37 +/- 0.19 log10 CFU/ml per h with the lowest dose versus 0.96 +/- 0.25 log10 CFU/ml per h with the highest dose (P less than 0.001). At the relatively high doses of 160/20 and 200/25 mg of piperacillin-tazobactam per kg per h, the bactericidal activity of the combination was comparable to that of 10 and 25 mg of ceftriaxone per kg per h, respectively.
Resumo:
We investigated the effect of cefotaxime and chloramphenicol on endotoxin concentrations in cerebrospinal fluid (CSF) and on the development of brain edema in rabbits with Escherichia coli meningitis. Both antibiotics were similarly effective in reducing bacterial titers. Cefotaxime, but not chloramphenicol, induced a marked increase of endotoxin in CSF, from log10 1.5 +/- 0.8 to log10 2.8 +/- 0.7 ng/ml (P less than .01). This result was associated with an increase in brain water content (405 +/- 12 g of water/100 g of dry weight compared with 389 +/- 8 g in untreated controls; P less than .01), whereas in animals treated with chloramphenicol, brain water content was identical to controls. The cefotaxime-induced increase in endotoxin concentration and brain edema were both neutralized by polymyxin B, which binds to the lipid A moiety of endotoxin, or by a monoclonal antibody to lipid A. These results indicate that treating gram-negative bacillary meningitis with selected antibiotics induces increased endotoxin concentrations in CSF that are associated with brain edema.
Resumo:
BACKGROUND: Based on antimicrobial resistance patterns found in Swiss university hospitals, treatment with a third-generation cephalosporin is currently advised for Swiss children with urinary tract infection. OBJECTIVE: The aim of this study was to prospectively assess the susceptibility of Escherichia coli strains isolated from children with symptomatic community-acquired urinary tract infection. METHODS: The antimicrobial susceptibility of E coli strains causing symptomatic community-acquired urinary tract infections was assessed in outpatient children attending the emergency management unit at the Department of Pediatrics, Mendrisio and Bellinzona Hospitals, Switzerland. Strains from children receiving antimicrobial prophylaxis or prescribed antimicrobials in the previous 4 weeks were excluded. Clinical and Laboratory Standards Institute methods were used for culture and identification of pathogens. E coli susceptibility testing was performed using the disk diffusion technique. RESULTS: Strains from 100 consecutive outpatient children (73 girls, 27 boys; aged 5 weeks-17 years [median, 33 months]; 100% white) were assessed. High rates of ampicillin and cotrimoxazole resistance (39 and 21 strains, respectively) and low rates of nitrofurantoin resistance (4 strains) were identified. No resistance was identified for coamoxiclav or third-generation cephalosporins. CONCLUSIONS: In these Swiss outpatient children with symptomatic community-acquired urinary tract infection, without antimicrobial prophylaxis or recent prescription of antimicrobials, uropathogenic E coli strains resistant in vitro to ampicillin and cotrimoxazole were common. However, in vitro resistance to nitrofurantoin, coamoxiclav, and third-generation cephalosporins was uncommon.
Resumo:
Only a subset of Shiga toxin (Stx)-producing Escherichia coli (STEC) are human pathogens, but the characteristics that account for differences in pathogenicity are not well understood. In this study, we investigated the distribution of the stx variants coding for Stx2 and its variants in highly virulent STEC of seropathotype A and low-pathogenic STEC of seropathotype C. We analysed and compared transcription of the corresponding genes, production of Shiga toxins, and stx-phage release in basal as well as in induced conditions. We found that the stx(2) variant was mainly associated with strains of seropathotype A, whereas most of the strains of seropathotype C possessed the stx(2-vhb) variant, which was frequently associated with stx(2), stx(2-vha) or stx(2c). Levels of stx(2) and stx(2)-related mRNA were higher in strains belonging to seropathotype A and in those strains of seropathotype C that express the stx(2) variant than in the remaining strains of seropathotype C. The stx(2-vhb) genes were the least expressed, in basal as well as in induced conditions, and in many cases did not seem to be carried by an inducible prophage. A clear correlation was observed between stx mRNA levels and stx-phage DNA in the culture supernatants, suggesting that most stx(2)-related genes are expressed only when they are carried by a phage. In conclusion, some relationship between stx(2)-related gene expression in vitro and the seropathotype of the STEC strains was observed. A higher expression of the stx(2) gene and a higher release of its product, in basal as well as in induced conditions, was observed in pathogenic strains of seropathotype A. A subset of strains of seropathotype C shows the same characteristics and could be a high risk to human health.
Resumo:
Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx(2) mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx(2) repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.
Resumo:
Amperometric electrodeposition has been used to obtain uniform, conductive, and repeatable polyaniline (PANi) thin films for use in nano scaled biochemical sensors. This report describes the characterization of these films. Techniques such as ellipsometry were used to test repeatability of the deposition and the uniformity of the deposited thin films. Raman spectroscopy was utilized to confirm the composition of the deposited PANi thin films. Fluorescence microscopy was used to determine the immobilization of antibodies to the PANi thin films using biotin-avidin interactions, as well as the density of active binding sites. Ellipsometry results demonstrated that biomolecules could be immobilized on PANi films as thin as 9nm. Evidence from the Raman spectroscopy demonstrated the conductive nature of the PANi films. The fluorescence microscopy demonstrated that antibodies could be immobilized on PANi films, although the experiment also demonstrated a low density of binding sites. The characterization demonstrates the utility of the PANi thin films as a conductive interface between the inorganic sensor platform and biochemical molecules.
Resumo:
Adhesion is the first step in the pathogenesis of enterotoxigenic Escherichia coli infections. The genes encoding the most prevalent adhesion factors CFA/I, CS3 and CS6 were cloned into Vibrio cholerae strain CVD 103-HgR and expression of fimbriae was investigated in wildtype and recombinant strains by transmission electron microscopy in conjunction with immunolabelling and negative staining. Negative staining was effective in revealing CFA/I and CS3, but not CS6. Although morphology of fimbriae differed between wildtype and recombinant strains, corresponding surface antigens were recognized by specific antibodies. The present study provides evidence that ETEC-specific fimbriae can adequately be expressed in an attenuated V. cholerae vaccine strain and that immunoelectron microscopy is a critical tool to validate the surface expression of antigens in view of their possible suitability for recombinant vaccines.
Resumo:
Diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) requires adhesion of microorganisms to enterocytes. Hence, a promising approach to immunoprophylaxis is to elicit antibodies against colonisation factor antigens (CFAs). Genes encoding the most prevalent ETEC-specific surface antigens were cloned into Vibrio cholerae and Salmonella vaccine strains. Expression of surface antigens was assessed by electron-microscopy. Whereas negative staining was effective in revealing CFA/I and CS3, but not CS6, immunolabelling allowed identification of all surface antigens examined. The V. cholerae vaccine strain CVD103 did not express ETEC-specific colonisation factors, whereas CVD103-HgR expressed CS3 only. However, expression of both CFA/I and CS3 was demonstrated in Salmonella Ty21a.
Resumo:
OBJECTIVES: In order to create a suitable model for high-throughput drug screening, a Giardia lamblia WB C6 strain expressing Escherichia coli glucuronidase A (GusA) was created and tested with respect to susceptibility to the anti-giardial drugs nitazoxanide and metronidazole. METHODS: GusA, a well-established reporter gene in other systems, was cloned into the vector pPacVInteg allowing stable expression in G. lamblia under control of the promoter from the glutamate dehydrogenase (gdh) gene. The resulting transgenic strain was compared with the wild-type strain in a vitality assay, characterized with respect to susceptibility to nitazoxanide, metronidazole and -- as assessed in a 96-well plate format -- to a panel of 15 other compounds to be tested for anti-giardial activity. RESULTS: GusA was stably expressed in G. lamblia. Using a simple glucuronidase assay protocol, drug efficacy tests yielded results similar to those from cell counting. CONCLUSIONS: G. lamblia WB C6 GusA is a suitable tool for high-throughput anti-giardial drug screening.
Resumo:
Cattle are a natural reservoir for Shiga toxigenic Escherichia coli (STEC), however, no data are available on the prevalence and their possible association with organic or conventional farming practices. We have therefore studied the prevalence of STEC and specifically O157:H7 in Swiss dairy cattle by collecting faeces from approximately 500 cows from 60 farms with organic production (OP) and 60 farms with integrated (conventional) production (IP). IP farms were matched to OP farms and were comparable in terms of community, agricultural zone, and number of cows per farm. E. coli were grown overnight in an enrichment medium, followed by DNA isolation and PCR analysis using specific TaqMan assays. STEC were detected in all farms and O157:H7 were present in 25% of OP farms and 17% of IP farms. STEC were detected in 58% and O157:H7 were evidenced in 4.6% of individual faeces. Multivariate statistical analyses of over 250 parameters revealed several risk-factors for the presence of STEC and O157:H7. Risk-factors were mainly related to the potential of cross-contamination of feeds and cross-infection of cows, and age of the animals. In general, no significant differences between the two farm types concerning prevalence or risk for carrying STEC or O157:H7 were observed. Because the incidence of human disease caused by STEC in Switzerland is low, the risk that people to get infected appears to be small despite a relatively high prevalence in cattle. Nevertheless, control and prevention practices are indicated to avoid contamination of animal products.
Resumo:
Forty Escherichia coli strains isolated primarily from neonatal meningitis, urinary tract infections and feces were screened for the presence of virulence genes with a newly developed microarray on the array tube format. A total of 32 gene probes specific for extraintestinal as well as intestinal E. coli pathotypes were included. Eighty-eight percent of the analyzed strains were positive for the K1-specific probe on the microarray and could be confirmed with a specific antiserum against the K1 capsular polysaccharide. The gene for the hemin receptor ChuA was predominantly found in 95% of strains. Other virulence genes associated with K1 and related strains were P, S, and F1C fimbriae specific for extraintestinal E. coli, the genes for aerobactin, the alpha-hemolysin and the cytotoxic necrotizing factor. In two strains, the O157-specific catalase gene and the gene for the low-molecular-weight heat-stable toxin AstA were detected, respectively. A total of 19 different virulence gene patterns were observed. No correlation was observed between specific virulence gene patterns and a clinical outcome. The data indicate that virulence genes typical of extraintestinal E. coli are predominantly present in K1 strains. Nevertheless, some of them can carry virulence genes known to be characteristic of intestinal E. coli. The distribution and combination of virulence genes show that K1 isolates constitute a heterogeneous group of E. coli.
Resumo:
We describe a microarray based broad-range screening technique for Escherichia coli virulence typing. Gene probes were amplified by PCR from a plasmid bank of characterised E. coli virulence genes and were spotted onto a glass slide to form an array of capture probes. Genomic DNA from E. coli strains which were to be tested for the presence of these virulence gene sequences was labelled with fluorescent cyanine dyes by random amplification and then hybridised against the array of probes. The hybridisation, washing and data analysis conditions were optimised for glass slides, and the applicability of the method for identifying the presence of the virulence genes was determined using reference strains and clinical isolates. It was found to be a sensitive screening method for detecting virulence genes, and a powerful tool for determining the pathotype of E. coli. It will be possible to expand and automate this microarray technique to make it suitable for rapid and reliable diagnostic screening of bacterial isolates.
Resumo:
Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.
Resumo:
The widespread species Escherichia coli includes a broad variety of different types, ranging from highly pathogenic strains causing worldwide outbreaks of severe disease to avirulent isolates which are part of the normal intestinal flora or which are well characterized and safe laboratory strains. The pathogenicity of a given E. coli strain is mainly determined by specific virulence factors which include adhesins, invasins, toxins and capsule. They are often organized in large genetic blocks either on the chromosome ('pathogenicity islands'), on large plasmids or on phages and can be transmitted horizontally between strains. In this review we summarize the current knowledge of the virulence attributes which determine the pathogenic potential of E. coli strains and the methodology available to assess the virulence of E. coli isolates. We also focus on a recently developed procedure based on a broad-range detection system for E. coli-specific virulence genes that makes it possible to determine the potential pathogenicity and its nature in E. coli strains from various sources. This makes it possible to determine the pathotype of E. coli strains in medical diagnostics, to assess the virulence and health risks of E. coli contaminating water, food and the environment and to study potential reservoirs of virulence genes which might contribute to the emergence of new forms of pathogenic E. coli.