969 resultados para Equations - numerical solutions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Prepared for U.S. Army Engineer District, Mobile."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (M.S.)--University of Illinois at Urbana-Champaign.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"UILU-ENG 80 1701."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"COO-1469-0164."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"(This is being submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics, June 1959.)"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an analysis of the thermomechanical behavior of hollow circular cylinders of functionally graded material (FGM). The solutions are obtained by a novel limiting process that employs the solutions of homogeneous hollow circular cylinders, with no recourse to the basic theory or the equations of non-homogeneous thermoclasticity. Several numerical cases are studied, and conclusions are drawn regarding the general properties of thermal stresses in the FGM cylinder. We conclude that thermal stresses necessarily occur in the FGM cylinder, except in the trivial case of zero temperature. While heat resistance may be improved by sagaciously designing the material composition, careful attention must be paid to the fact that thermal stresses in the FGM cylinder are governed by more factors than are its homogeneous counterparts. The results that are presented here will serve as benchmarks for future related work. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish maximum principles for second order difference equations and apply them to obtain uniqueness for solutions of some boundary value problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we are concerned with determining values of lambda, for which there exist positive solutions of the nonlinear eigenvalue problem [GRAPHICS] where a, b, c, d is an element of [0, infinity), xi(i) is an element of (0, 1), alpha(i), beta(i) is an element of [0 infinity) (for i is an element of {1, ..., m - 2}) are given constants, p, q is an element of C ([0, 1], (0, infinity)), h is an element of C ([0, 1], [0, infinity)), and f is an element of C ([0, infinity), [0, infinity)) satisfying some suitable conditions. Our proofs are based on Guo-Krasnoselskii fixed point theorem. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multibody dynamics of a satellite in circular orbit, modeled as a central body with two hinge-connected deployable solar panel arrays, is investigated. Typically, the solar panel arrays are deployed in orbit using preloaded torsional springs at the hinges in a near symmetrical accordion manner, to minimize the shock loads at the hinges. There are five degrees of freedom of the interconnected rigid bodies, composed of coupled attitude motions (pitch, yaw and roll) of the central body plus relative rotations of the solar panel arrays. The dynamical equations of motion of the satellite system are derived using Kane's equations. These are then used to investigate the dynamic behavior of the system during solar panel deployment via the 7-8th-order Runge-Kutta integration algorithms and results are compared with approximate analytical solutions. Chaotic attitude motions of the completely deployed satellite in circular orbit under the influence of the gravity-gradient torques are subsequently investigated analytically using Melnikov's method and confirmed via numerical integration. The Hamiltonian equations in terms of Deprit's variables are used to facilitate the analysis. (C) 2003 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a parameter, we consider the modified relaxed energy of the liquid crystal system. Each minimizer of the modified relaxed energy is a weak solution to the liquid crystal equilibrium system. We prove the partial regularity of minimizers of the modified relaxed energy. We also prove the existence of infinitely many weak solutions for the special boundary value x.