868 resultados para Environmental Degradation
Resumo:
Climate change presents risks to health that must be addressed by both decision-makers and public health researchers. Within the application of Environmental Health Impact Assessment (EHIA), there have been few attempts to incorporate climate change-related health risks as an input to the framework. This study used a focus group design to examine the perceptions of government, industry and academic specialists about the suitability of assessing the health consequences of climate change within an EHIA framework. Practitioners expressed concern over a number of factors relating to the current EHIA methodology and the inclusion of climate change-related health risks. These concerns related to the broad scope of issues that would need to be considered, problems with identifying appropriate health indicators, the lack of relevant qualitative information that is currently incorporated in assessment and persistent issues surrounding stakeholder participation. It was suggested that improvements are needed in data collection processes, particularly in terms of adequate communication between environmental and health practitioners. Concerns were raised surrounding data privacy and usage, and how these could impact on the assessment process. These findings may provide guidance for government and industry bodies to improve the assessment of climate change-related health risks.
Resumo:
Acoustic sensors provide an effective means of monitoring biodiversity at large spatial and temporal scales. They can continuously and passively record large volumes of data over extended periods, however these data must be analysed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced users can produce accurate results, however the time and effort required to process even small volumes of data can make manual analysis prohibitive. Our research examined the use of sampling methods to reduce the cost of analysing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilising five days of manually analysed acoustic sensor data from four sites, we examined a range of sampling rates and methods including random, stratified and biologically informed. Our findings indicate that randomly selecting 120, one-minute samples from the three hours immediately following dawn provided the most effective sampling method. This method detected, on average 62% of total species after 120 one-minute samples were analysed, compared to 34% of total species from traditional point counts. Our results demonstrate that targeted sampling methods can provide an effective means for analysing large volumes of acoustic sensor data efficiently and accurately.
Resumo:
The importance of the environment to the fulfilment of human rights is widely accepted at international law. What is less well-accepted is the proposition that we, as humans, possess rights to the environment beyond what is necessary to support our basic human needs. The suggestion that a human right to a healthy environment may be emerging at international law raises a number of theoretical and practical challenges for human rights law, with such challenges coming from both within and outside the human rights discourse. It is argued that human rights law can make a positive contribution to environmental protection, but the precise nature of the connection between the environment and human rights warrants more critical analysis. This short paper considers the different ways that the environment is conceptualised in international human rights law and analyses the proposition that a right to a healthy environment is emerging. It identifies some of the challenges which would need to be overcome before such a right could be recognised, including those which draw on the disciplines of deep ecology and earth jurisprudence.
Resumo:
International environmental law governing conservation and management of forests has been largely limited to soft-law instruments. Nevertheless, increasing attention has been given to forest issues, most recently in the context of the climate change regime and the reducing emissions from deforestation and degradation (REDD) mechanism. The current law impacting upon the protection of forests and the contribution of emissions from deforestation will be considered in this chapter. The way forward will be explored, including the current options being considered for the post-Kyoto period.
Resumo:
The article explores the role of international environmental legal principles and their role in future climate change instruments. The five international environmental legal principles explored in this context are: inter and intergenerational equity, the precautionary principle, common but differentiated responsibility, the polluter pays and principle and the principles of responsibility and prevention. Principles are used within regulatory frameworks to guide the interpretation and implementation of the obligations specified within the instrument. It is found that these principles provide a useful basis for the development of international adaptation and mitigation measures that are equitable and ethical in nature. This article argues that these principles must be drafted more strategically into international climate change instruments allowing them to serve as a foundational basis upon which more stringent and equitable binding duties and rights can be derived from. This article makes some recommendations as to the type of obligations that these principles could be used to inform in future climate instruments.
Resumo:
In recent times, higher education institutions have paid increasing attention to the views of students to obtain feedback on their experience of learning and teaching through internal surveys. This article reviews research in the field and reports on practices in other Australian universities. Findings demonstrate that while student feedback is valued and used by all Australian universities, survey practices are idiosyncratic and in the majority of cases, questionnaires lack validity and reliability; data are used inadequately or inappropriately; and they offer limited potential for cross-sector benchmarking. The study confirms the need for institutions to develop an overarching framework for evaluation in which a valid, reliable, multidimensional and useful student feedback survey constitutes just one part. Given external expectations and internal requirements to collect feedback from students on their experience of learning and teaching, the pursuit of sound evaluation practices will continue to be of interest at local, national and international levels.
Resumo:
Well-designed indoor environments can support people’s health and welfare. In this literature review, we identify the environmental features that affect human health and wellbeing. Environmental characteristics found to influence health outcomes and/or wellbeing included: environmental safety; indoor air quality (e.g. odour and temperature); sound and noise; premises and interior design (e.g. construction materials, viewing nature and experiencing nature, windows versus no windows, light, colours, unit layout and placement of the furniture, the type of room, possibilities to control environmental elements, environmental complexity and sensory simulations, cleanliness, ergonomics and accessibility, ‛‛wayfinding’’); art, and music, among others. Indoor environments that incorporate healing elements can, for instance, reduce anxiety, lower blood pressure, lessen pain and shorten hospital stays.
Resumo:
In recent years, cities have shown increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change, and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning, human needs are supplied while natural resources are used in the most effective and sustainable manner and ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, this chapter briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, it presents a conceptual framework for a new methodology for developing sustainable urban ecosystems through ecological planning approach.
Resumo:
Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, as the gathered information is from the crowd, the data quality is always hard to manage. There are many ways to manage data quality, and reputation management is one of the common approaches. In recent year, many research teams have deployed many audio or image sensors in natural environment in order to monitor the status of animals or plants. The collected data will be analysed by ecologists. However, as the amount of collected data is exceedingly huge and the number of ecologists is very limited, it is impossible for scientists to manually analyse all these data. The functions of existing automated tools to process the data are still very limited and the results are still not very accurate. Therefore, researchers have turned to recruiting general citizens who are interested in helping scientific research to do the pre-processing tasks such as species tagging. Although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Therefore, this research aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we aim to investigate how to use reputation management to enhance data reliability. Reputation systems have been used to solve the uncertainty and improve data quality in many marketing and E-Commerce domains. The commercial organizations which have chosen to embrace the reputation management and implement the technology have gained many benefits. Data quality issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. However, research on reputation management in this area is relatively new. We therefore start our investigation by examining existing reputation systems in different domains. Then we design novel reputation management approaches for Citizen Science projects to categorise participants and data. We have investigated some critical elements which may influence data reliability in Citizen Science projects. These elements include personal information such as location and education and performance information such as the ability to recognise certain bird calls. The designed reputation framework is evaluated by a series of experiments involving many participants for collecting and interpreting data, in particular, environmental acoustic data. Our research in exploring the advantages of reputation management in Citizen Science (or crowdsourcing in general) will help increase awareness among organizations that are unacquainted with its potential benefits.
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.
Resumo:
Coal Seam Gas (CSG) is a form of natural gas (mainly methane) sorbed in underground coal beds. To mine this gas, wells are drilled directly into an underground coal seam and groundwater (CSG water) is pumped out to the surface. This lowers the downhole piezometric pressure and enables gas desporption from the coal matrix. In the United States, this gas has been extracted commercially since the 1980s. The economic success of US CSG projects has inspired exploration and development in Australia and New Zealand. In Australia, Queensland’s Bowen and Surat basins have been the subject of increased CSG development over the last decade. CSG growth in other Australian basins has not matured to the same level but exploration and development are taking place at an accelerated pace in the Sydney Basin (Illawarra and the Hunter Valley, NSW) and in the Gunnedah Basin. Similarly, CSG exploration in New Zealand has focused in the Waikato region (Maramarua and Huntly), in the West Coast region (Buller, Reefton, and Greymouth), and in Southland (Kaitangata, Mataura, and Ohai). Figure 1 shows a Shcoeller diagram with CSG samples from selected basins in Australia, New Zealand, and the USA. CSG water from all of these basins exhibit the same geochemical signature – low calcium, low magnesium, high bicarbonate, low sulphate and, sometimes, high chloride. This water quality is a direct result of specific biological and geological processes that have taken part in the formation of CSG. In general, these processes include the weathering of rocks (carbonates, dolomite, and halite), cation exchange with clays (responsible for enhanced sodium and depleted calcium and magnesium), and biogenic processes (accounting for the presence of high bicarbonate concentrations). The salinity of CSG waters tends to be brackish (TDS < 30000 mg/l) with a fairly neutral pH. These particular characteristics need to be taken into consideration when assessing water management and disposal alternatives. Environmental issues associated with CSG water disposal have been prominent in developed basins such as the Powder River Basin (PRB) in the United States. When disposed on the land or used for irrigation, water having a high dissolved salts content may reduce water availability to crops thus affecting crop yield. In addition, the high sodium, low calcium and low magnesium concentrations increase the potential to disperse soils and significantly reduce the water infiltration rate. Therefore, CSG waters need to be properly characterised, treated, and disposed to safeguard the environment without compromising other natural resources.