977 resultados para Elicitation, Expert Opinion, Regression
Resumo:
The concept of global justice has been developed to stress the worldwide implications of moral problems. Not much, however, has been written about the actual politics of global justice. This article focuses on public opinion and argues that attitudes about international redistribution are not a simple projection of attitudes about the domestic situation. In countries where domestic income redistribution is seen as an important priority, foreign aid is less popular; where this is less so, there is more concern for the fate of the poor in the South. Far from reflecting a lack of coherence in public opinion, these counterintuitive results need to be understood in connection with policy achievements in donor countries. The authors' empirical findings suggest that although the commitment to redistribute is stronger at the national level, relationships of solidarity do not stop at national boundaries. The achievement of justice at home in fact sustains justice abroad.
Resumo:
The main objective of this letter is to formulate a new approach of learning a Mahalanobis distance metric for nearest neighbor regression from a training sample set. We propose a modified version of the large margin nearest neighbor metric learning method to deal with regression problems. As an application, the prediction of post-operative trunk 3-D shapes in scoliosis surgery using nearest neighbor regression is described. Accuracy of the proposed method is quantitatively evaluated through experiments on real medical data.
Resumo:
The hazards associated with major accident hazard (MAH) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identitication and quantification of the hazards associated with chemical industries. This research work presents the results of a consequence analysis carried out to assess the damage potential of the hazardous material storages in an industrial area of central Kerala, India. A survey carried out in the major accident hazard (MAH) units in the industrial belt revealed that the major hazardous chemicals stored by the various industrial units are ammonia, chlorine, benzene, naphtha, cyclohexane, cyclohexanone and LPG. The damage potential of the above chemicals is assessed using consequence modelling. Modelling of pool fires for naphtha, cyclohexane, cyclohexanone, benzene and ammonia are carried out using TNO model. Vapor cloud explosion (VCE) modelling of LPG, cyclohexane and benzene are carried out using TNT equivalent model. Boiling liquid expanding vapor explosion (BLEVE) modelling of LPG is also carried out. Dispersion modelling of toxic chemicals like chlorine, ammonia and benzene is carried out using the ALOHA air quality model. Threat zones for different hazardous storages are estimated based on the consequence modelling. The distance covered by the threat zone was found to be maximum for chlorine release from a chlor-alkali industry located in the area. The results of consequence modelling are useful for the estimation of individual risk and societal risk in the above industrial area.Vulnerability assessment is carried out using probit functions for toxic, thermal and pressure loads. Individual and societal risks are also estimated at different locations. Mapping of threat zones due to different incident outcome cases from different MAH industries is done with the help of Are GIS.Fault Tree Analysis (FTA) is an established technique for hazard evaluation. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. However it is often difficult to estimate precisely the failure probability of the components due to insufficient data or vague characteristics of the basic event. It has been reported that availability of the failure probability data pertaining to local conditions is surprisingly limited in India. This thesis outlines the generation of failure probability values of the basic events that lead to the release of chlorine from the storage and filling facility of a major chlor-alkali industry located in the area using expert elicitation and proven fuzzy logic. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor invo1ved in expert elicitation .
Resumo:
Farm communication and extension programs are vital part of the farm development attempts. Electronic media plays a major role in farm extension activities. Kerala, the consumer state, which was a complete agricultural state in pre-independence period, is the sprouting land of agricultural extension and publication activities in print media. Later AIR (All India Radio) farm programs and farm broadcasting of Doordarshan enriched the role of electronic media in farm extension activities. The media saturated southern state of India received this new electronic media farm communication revolution whole heartedly. However, after 1990, Kerala witnessed a flood of private T V channels and currently there are 24 channels in this regional language, named Malayalam. All major news and entertainment channels are broadcasting farm programs. Farm programs of AIR and Doordarshan, broadcasted in Malayalam language, have been well accepted to the farmers‘ in Kerala. However, post-independence period, witnessed the formation of Kerala state in Indian Union and the first ballot-elected communist Government started its administration. After the land reform bills, the state witnessed a gradual decrease in agricultural production. Even if it is not reflected much in the attitude and practices of farm community and farm broadcast of traditional electronic broadcasting, a change is observable after the post-liberalization era of India. Private Television channels, which were focused on entertainment value of programs, started broadcasting farm programs and the parameters of program production went through certain changes. In this situation, there is ample relevance for a study about the farm programs of electronic media in terms of a comparative study of audience perception. The study is limited in the state of Kerala as it is the most media saturated state in India. The study analyzes the rate, nature and scope of adoption of farming methods transmitted through electronic media (T.V. and Radio) in Malayalam language.All kinds of Farm programs including comprehensive program serials, success stories, seasonal cropping methods, experts opinion, been analyzed on the basis of the following objectives. To find whether propagating new farm methods through farm programs in electronic media or the availability of adequate infrastructure and economic factors make a farmer to adopt a new farming method. To find which electronic media has more influence on farmers to adopt agricultural programs. To find which form of electronic media gets better feedback from farmers To find out whether the programs of T.V. or Radio is more acceptable to farmers than the print media. To find whether farmers gets the message through their preferred medium for the message. The researcher recorded opinions from a panel of agricultural officers, farm Information officers, agro extension researchers and experts. According to their opinions and guidelines, a pilot study is designed and conducted in Kanjikuzhy Panchayath, in Alappuzha district, Kerala. The Panchayath is selected by considering its ideal nature of being the sample for a social Science research. Besides, the nature of farming in the Panchayath, which devoid of the cultivation of cash crops also supported its sample value. As per the observations from the pilot study, researcher confirmed the Triangulation method as the methodology of research. The questionnaire survey, being the primary part contained 42 Questions with 6 independent and 32 dependent variables. The survey is conducted among 400 respondents in Idukki, Alappuzha and Pathanamthitta districts considering geographical differences and distribution of different types of crops. The response from a total of 360 respondents, 120 from each district, finally selected for tabulation and data analysis.The data analysis, based on percentage analysis, along with the results from focus group discussion among a selected group of 20 farmers, together produced the results as follows. Farmers, who are the audience of farm programs, have a very serious approach towards the medium. They are maintaining a critical point of view towards the content of the programs. Farmers are reasonably aware about the financial side of the programs and the monitory aspirations of both private and Government owned Television channels. Even though, the farmers are not aware on the technical terminology and jargons, they have ideas about success stories, program serials and they are even informed about channels are not maintaining an audience research section like AIR. Though the farmers accept Doordarshan as the credential source of farm information and methods, they are inclined to the entertainment value of programs too. They prefer to have more entertainment value for the programs of Doordarshan. Surprisingly, they have very solid suggestions on even about the shots which add entertainment value to the farm broadcasting methods of Doordarshan. Farmers are very much aware about the fact that media is just an instrument for inspiration and persuasion. They strongly believe that the source of information and new methods is agricultural research and an effective change happens only when there are adequate infrastructure and marketing facilities, along with the proper support from Government agricultural guideline and support systems like Krishi Bhavans. They strongly believe that media alone cannot create any magic in increasing agricultural production. Farmers are pointing out the lack of response to the feedback and queries of farmers on farming methods, as an evidence for the difference in levels of commitment of Government and private owned Television channels.Farmers are still perceiving AIR farm programs are far more committed to farmers and farming than any other electronic medium. However, they are seriously lacking Radio receivers with medium wave reception facility. Farmers perceive that the farming methods on new crops are more adoptable than the farming methods of traditional crops in both private and Government owned Television channels. There are multiple factors behind this observation from farmers. Farmers changed in terms of viewing habits and they prefer success stories, which are totally irrelevant and they even think that such stories encourage people to go for farming and they opined that such stories are good sources of inspiration. However, they are all very much sure about the importance and particular about the presence of entertainment factor even in farm programs. Farmers expect direct interaction of any expert of the new farming method to implement the method in their agriculture practices. Though introduction of a new idea in the T.V. is acceptable, farmers need the direct instruction of expert on field to start implementing the new farming practices Farmers still have an affinity towards print media reports and agricultural pages and they have complaints to print media on the removal of agricultural information pages from news papers. They prefer the reports in print media as it facilitates them to collect and refer articles when they need it. Farmers are having an eye of doubt about the credibility of farm programs by private T.V. channels. Even if they prefer private Television channels for listening and adopting new farming methods and other farm information, they scrutinize programs to know whether they are sponsored programs by agrochemical or agro-fertilizer manufacturer.
Resumo:
Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.
Resumo:
An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos
Resumo:
In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576
Resumo:
Mit aktiven Magnetlagern ist es möglich, rotierende Körper durch magnetische Felder berührungsfrei zu lagern. Systembedingt sind bei aktiv magnetgelagerten Maschinen wesentliche Signale ohne zusätzlichen Aufwand an Messtechnik für Diagnoseaufgaben verfügbar. In der Arbeit wird ein Konzept entwickelt, das durch Verwendung der systeminhärenten Signale eine Diagnose magnetgelagerter rotierender Maschinen ermöglicht und somit neben einer kontinuierlichen Anlagenüberwachung eine schnelle Bewertung des Anlagenzustandes gestattet. Fehler können rechtzeitig und ursächlich in Art und Größe erkannt und entsprechende Gegenmaßnahmen eingeleitet werden. Anhand der erfassten Signale geschieht die Gewinnung von Merkmalen mit signal- und modellgestützten Verfahren. Für den Magnetlagerregelkreis erfolgen Untersuchungen zum Einsatz modellgestützter Parameteridentifikationsverfahren, deren Verwendbarkeit wird bei der Diagnose am Regler und Leistungsverstärker nachgewiesen. Unter Nutzung von Simulationsmodellen sowie durch Experimente an Versuchsständen werden die Merkmalsverläufe im normalen Referenzzustand und bei auftretenden Fehlern aufgenommen und die Ergebnisse in einer Wissensbasis abgelegt. Diese dient als Grundlage zur Festlegung von Grenzwerten und Regeln für die Überwachung des Systems und zur Erstellung wissensbasierter Diagnosemodelle. Bei der Überwachung werden die Merkmalsausprägungen auf das Überschreiten von Grenzwerten überprüft, Informationen über erkannte Fehler und Betriebszustände gebildet sowie gegebenenfalls Alarmmeldungen ausgegeben. Sich langsam anbahnende Fehler können durch die Berechnung der Merkmalstrends mit Hilfe der Regressionsanalyse erkannt werden. Über die bisher bei aktiven Magnetlagern übliche Überwachung von Grenzwerten hinaus erfolgt bei der Fehlerdiagnose eine Verknüpfung der extrahierten Merkmale zur Identifizierung und Lokalisierung auftretender Fehler. Die Diagnose geschieht mittels regelbasierter Fuzzy-Logik, dies gestattet die Einbeziehung von linguistischen Aussagen in Form von Expertenwissen sowie die Berücksichtigung von Unbestimmtheiten und ermöglicht damit eine Diagnose komplexer Systeme. Für Aktor-, Sensor- und Reglerfehler im Magnetlagerregelkreis sowie Fehler durch externe Kräfte und Unwuchten werden Diagnosemodelle erstellt und verifiziert. Es erfolgt der Nachweis, dass das entwickelte Diagnosekonzept mit beherrschbarem Rechenaufwand korrekte Diagnoseaussagen liefert. Durch Kaskadierung von Fuzzy-Logik-Modulen wird die Transparenz des Regelwerks gewahrt und die Abarbeitung der Regeln optimiert. Endresultat ist ein neuartiges hybrides Diagnosekonzept, welches signal- und modellgestützte Verfahren der Merkmalsgewinnung mit wissensbasierten Methoden der Fehlerdiagnose kombiniert. Das entwickelte Diagnosekonzept ist für die Anpassung an unterschiedliche Anforderungen und Anwendungen bei rotierenden Maschinen konzipiert.
Resumo:
Conceptual Information Systems unfold the conceptual structure of data stored in relational databases. In the design phase of the system, conceptual hierarchies have to be created which describe different aspects of the data. In this paper, we describe two principal ways of designing such conceptual hierarchies, data driven design and theory driven design and discuss advantages and drawbacks. The central part of the paper shows how Attribute Exploration, a knowledge acquisition tool developped by B. Ganter can be applied for narrowing the gap between both approaches.
Resumo:
We study the relation between support vector machines (SVMs) for regression (SVMR) and SVM for classification (SVMC). We show that for a given SVMC solution there exists a SVMR solution which is equivalent for a certain choice of the parameters. In particular our result is that for $epsilon$ sufficiently close to one, the optimal hyperplane and threshold for the SVMC problem with regularization parameter C_c are equal to (1-epsilon)^{- 1} times the optimal hyperplane and threshold for SVMR with regularization parameter C_r = (1-epsilon)C_c. A direct consequence of this result is that SVMC can be seen as a special case of SVMR.
Resumo:
Support Vector Machines Regression (SVMR) is a regression technique which has been recently introduced by V. Vapnik and his collaborators (Vapnik, 1995; Vapnik, Golowich and Smola, 1996). In SVMR the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called Vapnik"s $epsilon$- insensitive loss function, which is similar to the "robust" loss functions introduced by Huber (Huber, 1981). The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of Vapnik's loss function is less clear. In this paper the use of Vapnik's loss function is shown to be equivalent to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to Vapnik's loss function, but to a much broader class of loss functions.
Resumo:
This paper presents a computation of the $V_gamma$ dimension for regression in bounded subspaces of Reproducing Kernel Hilbert Spaces (RKHS) for the Support Vector Machine (SVM) regression $epsilon$-insensitive loss function, and general $L_p$ loss functions. Finiteness of the RV_gamma$ dimension is shown, which also proves uniform convergence in probability for regression machines in RKHS subspaces that use the $L_epsilon$ or general $L_p$ loss functions. This paper presenta a novel proof of this result also for the case that a bias is added to the functions in the RKHS.
Resumo:
Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants
Resumo:
It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features
Resumo:
In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 different compositional datasets and modelled the first canonical variable using a segmented regression model solely based on an observation about the scatter plots. In this paper, multiple linear regressions are applied to different datasets to confirm the validity of our proposed model. In addition to dating the unknown tephras by calibration as discussed previously, another method of mapping the unknown tephras into samples of the reference set or missing samples in between consecutive reference samples is proposed. The application of these methodologies is demonstrated with both simulated and real datasets. This new proposed methodology provides an alternative, more acceptable approach for geologists as their focus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age of unknown tephra. Kew words: Tephrochronology; Segmented regression