957 resultados para Elevated temperature
Resumo:
Exposure to aqueous film forming foam (AFFF) was evaluated in 149 firefighters working at AFFF training facilities in Australia by analysis of PFOS and related compounds in serum. A questionnaire was designed to capture information about basic demographic factors, lifestyle factors and potential occupational exposure (such as work history and self-reported skin contact with foam). The results showed that a number of factors were associated with PFAA serum concentrations. Blood donation was found to be linked to low PFAA levels, and the concentrations of PFOS and PFHxS were found to be positively associated with years of jobs with AFFF contact. The highest levels of PFOS and PFHxS were one order of magnitude higher compared to the general population in Australia and Canada. Study participants who had worked ten years or less had levels of PFOS that were similar to or only slightly above those of the general population. This coincides with the phase out of 3M AFFF from all training facilities in 2003, and suggests that the exposures to PFOS and PFHxS in AFFF have declined in recent years. Self-reporting of skin contact and frequency of contact were used as an index of exposure. Using this index, there was no relationship between PFOS levels and skin exposure. This index of exposure is limited as it relies on self-report and it only considers skin exposure to AFFF, and does not capture other routes of potential exposure. Possible associations between serum PFAA concentrations and five biochemical outcomes were assessed. The outcomes were serum cholesterol, triglycerides, high-density lipoproteins, low density lipoproteins, and uric acid. No statistical associations between any of these endpoints and serum PFAA concentrations were observed.
Resumo:
An electric field (100 V/cm at 230°C and 150°C) has been applied to ammonium perchlorate (AP)/polystyrene (PS) propellant mixtures in order to understand the low temperature decomposition behavior of the propellant. The charge-carrying species is anionic in nature at 230°C, which could be ClO4−, but is cationic at 150°C, which could be either NH4+ or H+. These results are parallel to that observed for pure ammonium perchlorate (AP) pellets [1]. The burning rate (Image ) of the propellant was found to follow the same trend as that for the thermal decomposition of the propellant on application of an electric field. At 150°C Image was higher at the −ve electrode than at the +ve electrode, but at 230°C just the opposite was observed. Kinetic studies have confirmed that the decomposition of the orthorhombic AP follows two mechanism corresponding to E = 30 kcal mol−1 (180–230°C) and E = 15 kcal mol−1 (150–180°C).
Resumo:
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from −5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from −5 to −30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.
Resumo:
The mechanisms by which low temperature affects flowering and fruit set of grapevines are poorly understood, as is the specific response of the grapevine root system and inflorescence to low temperature effects that reduce fruit set. This study aimed to determine the responses of the root system and inflorescence of the grapevine 'Chardonnay' to low temperature (10 degrees C) during flowering, and considered the possible mechanisms of low temperature effects on those parts. Temperature treatments of 10 degrees C or 20 degrees C were imposed to potted 'Chardonnay' grapevines in a glasshouse for up to two weeks during the early stages of flowering. When the root system alone was exposed to 10 degrees C (with the rest of the plant at 20 degrees C) during flowering, the number of attached berries and percentage fruit set were significantly reduced by 50 % than when the root system alone was exposed to 20 degrees C. Whereas, exposure of the inflorescence alone to 10 degrees C (with the rest of the plant at 20 degrees C) delayed flowering, allowed rachis to grow longer, and increased both the number of attached berries (from 22 to 62 per vine) and fruit set (from 8 % to, 20 %), than when the inflorescence alone was exposed to 20 degrees C. This study will enhance our understanding of the possible mechanisms of low temperature effects on grapevine fruit set and productivity.
Resumo:
Es wird die Temperaturabhiingigkeit der CI35-Kernquadrupolresonanz in Natriumchlorat und Kupferchlorat im Temperature von 77 bis 300 °K untersucht. Es wird gezeigt, daß die Annahmen, die in der Theorie von Bayer gemacht werden, fur Chlorate gelten. Die Frequenz der Torsionsschwingungen der ClO3-Gruppe wird folglich mit dieser Theorie berechnet. Der berechnete Wert der Torsionsfrequenz stimmt gut mit vorhandenen Werten der Ramanspektroskopie überein.
Resumo:
Significant genotypic differences in tolerance of pollen germination and seed set to high temperatures have been shown in sorghum. However, it is unclear whether differences were associated with variation in either the threshold temperature above which reproductive processes are affected, or in the tolerance to increased temperature above that threshold. The objectives of this study were to (a) dissect known differences in heat tolerance for a range of sorghum genotypes into differences in the threshold temperature and tolerance to increased temperatures, (b) determine whether poor seed set under high temperatures can be compensated by increased seed mass, and (c) identify whether genotypic differences in heat tolerance in a controlled environment facility (CEF) can be reproduced in field conditions. Twenty genotypes were grown in a CEF under four day/night temperatures (31.9/21.0 °C, 32.8/21.0 °C, 36.1/21.0 °C, and 38.0/21.0 °C), and a subset of six genotypes was grown in the field under four different temperature regimes around anthesis. The novelty of the findings in this study related to differences in responsiveness to high temperature—genotypic differences in seed set percentage were found for both the threshold temperature and the tolerance to increased maximum temperature above that threshold. Further, the response of seed set to high temperature in the field study was well correlated to that in the CEF (R2 = 0.69), although the slope was significantly less than unity, indicating that heat stress effects may have been diluted under the variable field conditions. Poor seed set was not compensated by increased seed mass in either CEF or field environments. Grain yield was thus closely related to seed set percentage. This result demonstrates the potential for development of a low-cost field screening method to identify high-temperature tolerant varieties that could deliver sustainable yields under future warmer climates.
Resumo:
The homogeneous serine hydroxymethyltransferase from monkey liver was optimally activate at 60°C and the Arrhenius plot for the enzyme was nonlinear with a break at 15°C. The monkey liver enzyme showed high thermal stability of 62°C, as monitored by circular dichroism at 222 nm, absorbance at 280 nm and enzyme activity. The enzyme exhibited a sharp co-operative thermal transition in the range of 50°-70° (Tm= 65°C), as monitored by circular dichroism. L-Serine protected the enzyme against both thermal inactivation and thermal disruption of the secondary structure. The homotropic interactions of tetrahydrofolate with the enzyme was abolished at high temperatures (at 70°C, the Hill coefficient value was 1.0). A plot of h values vs. assay temperature of tetrahydrofolate saturation experiments, showed the presence of an intermediate conformer with an h value of 1.7 in the temperature range of 45°-60°C. Inclusion of a heat denaturation step in the scheme employed for the purification of serine hydroxymethyltransferase resulted in the loss of cooperative interactions with tetrahydrofolate. The temperature effects on the serine hydroxylmethyltransferase, reported for the first time, lead to a better understanding of the heat induced alterations in conformation and activity for this oligomeric protein.
Resumo:
Astaxanthin is a powerful antioxidant with various health benefits such as prevention of age-related macular degeneration and improvement of the immune system, liver and heart function. To improve the post-harvesting stability of astaxanthin used in food, feed and nutraceutical industries, the biomass of the high astaxanthin producing alga Haematococcus pluvialis was dried by spray- or freeze-drying and under vacuum or air at − 20 °C to 37 °C for 20 weeks. Freeze-drying led to 41 higher astaxanthin recovery compared to commonly-used spray-drying. Low storage temperature (− 20 °C, 4 °C) and vacuum-packing also showed higher astaxanthin stability with as little as 12.3 ± 3.1 degradation during 20 weeks of storage. Cost-benefit analysis showed that freeze-drying followed by vacuum-packed storage at − 20 °C can generate AUD600 higher profit compared to spray-drying from 100 kg H. pluvialis powder. Therefore, freeze-drying can be suggested as a mild and more profitable method for ensuring longer shelf life of astaxanthin from H. pluvialis.
Resumo:
The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress HS; temperature-humidity index (THI) ~78 or kept in a THI < 70 environment and pair-fed with heat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THI < 70 environment with ad libitum feeding (TN-AL). A subsequent recovery period (7 d), with THI < 70 and ad libitum feeding followed. Intake accounted for only part of the effects of heat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THI < 70 and ad libitum intake were restored. Heat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy.
Resumo:
Hendra virus (HeV), a highly pathogenic zoonotic paramyxovirus recently emerged from bats, is a major concern to the horse industry in Australia. Previous research has shown that higher temperatures led to lower virus survival rates in the laboratory. We develop a model of survival of HeV in the environment as influenced by temperature. We used 20 years of daily temperature at six locations spanning the geographic range of reported HeV incidents to simulate the temporal and spatial impacts of temperature on HeV survival. At any location, simulated virus survival was greater in winter than in summer, and in any month of the year, survival was higher in higher latitudes. At any location, year-to-year variation in virus survival 24 h post-excretion was substantial and was as large as the difference between locations. Survival was higher in microhabitats with lower than ambient temperature, and when environmental exposure was shorter. The within-year pattern of virus survival mirrored the cumulative within-year occurrence of reported HeV cases, although there were no overall differences in survival in HeV case years and non-case years. The model examines the effect of temperature in isolation; actual virus survivability will reflect the effect of additional environmental factors
Resumo:
Abstract is not available.
Resumo:
It is common to model the dynamics of fisheries using natural and fishing mortality rates estimated independently using two separate analyses. Fishing mortality is routinely estimated from widely available logbook data, whereas natural mortality estimations have often required more specific, less frequently available, data. However, in the case of the fishery for brown tiger prawn (Penaeus esculentus) in Moreton Bay, both fishing and natural mortality rates have been estimated from logbook data. The present work extended the fishing mortality model to incorporate an eco-physiological response of tiger prawn to temperature, and allowed recruitment timing to vary from year to year. These ecological characteristics of the dynamics of this fishery were ignored in the separate model that estimated natural mortality. Therefore, we propose to estimate both natural and fishing mortality rates within a single model using a consistent set of hypotheses. This approach was applied to Moreton Bay brown tiger prawn data collected between 1990 and 2010. Natural mortality was estimated by maximum likelihood to be equal to 0.032 ± 0.002 week−1, approximately 30% lower than the fixed value used in previous models of this fishery (0.045 week−1).