955 resultados para Electron paramagnetic resonance spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the incidence of depression increases, depression continues to inflict additional suffering to individuals and societies and better therapies are needed. Based on magnetic resonance spectroscopy and laboratory findings, gamma aminobutyric acid (GABA) may be intimately involved in the pathophysiology of depression. The isoelectric point of GABA (pI = 7.3) closely approximates the pH of cerebral spinal fluid (CSF). This may not be a trivial observation as it may explain preliminary spectrophotometric, enzymatic, and HPLC data that monoamine oxidase (MAO) deaminates GABA. Although MAO is known to deaminate substrates such as catecholamines, indoleamines, and long chain aliphatic amines all of which contain a lipophilic moiety, there is very good evidence to predict that a low concentration of a very lipophilic microspecies of GABA is present when GABA pI = pH as in the CSF. Inhibiting deamination of this microspecies of GABA could explain the well-established successful treatment of refractory depression with MAO inhibitors (MAOI) when other antidepressants that target exclusively levels of monoamines fail. If further experimental work can confirm these preliminary findings, physicians may consider revisiting the use of MAOI for the treatment of non-intractable depression because the potential benefits of increasing GABA as well as the monoamines may outweigh the risks associated with MAOI therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change. We monitored the kinetics of ligand-induced conformational changes in a small protein using six different ligands. We analyzed the kinetic data to simultaneously determine both binding affinities for the conformational states and the rate constants of conformational change. The approach we used is sufficiently robust to determine the affinities of three conformational states and detect even modest differences in the protein's affinities for relatively similar ligands. Ligand binding favors higher-affinity conformational states by increasing forward conformational rate constants and/or decreasing reverse conformational rate constants. The amounts by which forward rate constants increase and reverse rate constants decrease are proportional to the ratio of affinities of the conformational states. We also show that both the affinity ratio and another parameter, which quantifies the changes in conformational rate constants upon ligand binding, are strong determinants of the mechanism (conformational selection and/or induced fit) of molecular recognition. Our results highlight the utility of analyzing the kinetics of conformational changes to determine affinities that cannot be determined from equilibrium experiments. Most importantly, they demonstrate an inextricable link between conformational dynamics and the binding affinities of conformational states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcal protein A (SpA) is an important virulence factor from Staphylococcus aureus responsible for the bacterium's evasion of the host immune system. SpA includes five small three-helix-bundle domains that can each bind with high affinity to many host proteins such as antibodies. The interaction between a SpA domain and the Fc fragment of IgG was partially elucidated previously in the crystal structure 1FC2. Although informative, the previous structure was not properly folded and left many substantial questions unanswered, such as a detailed description of the tertiary structure of SpA domains in complex with Fc and the structural changes that take place upon binding. Here we report the 2.3-Å structure of a fully folded SpA domain in complex with Fc. Our structure indicates that there are extensive structural rearrangements necessary for binding Fc, including a general reduction in SpA conformational heterogeneity, freezing out of polyrotameric interfacial residues, and displacement of a SpA side chain by an Fc side chain in a molecular-recognition pocket. Such a loss of conformational heterogeneity upon formation of the protein-protein interface may occur when SpA binds its multiple binding partners. Suppression of conformational heterogeneity may be an important structural paradigm in functionally plastic proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicone has a relatively high coefficient of friction and silicone medical devices therefore lack inherent lubricity, leading to pain on device insertion and potential tissue trauma. In this study, higher molecular weight tetra(alkoxy) silanes, particularly tetra(oleyloxy) silane, have been used as crosslinkers in the condensation cure of a hydroxy end-functionalised linear poly(dimethylsiloxane). The resulting elastomers displayed a persistent lubricous surface of oleyl alcohol, and coefficients of friction (static and dynamic) approaching zero. Chemical structures of the synthesised silanes and surface alcohol exudate were confirmed by nuclear magnetic resonance spectroscopy. Mechanical properties of the elastomers, which were chemically identical to conventionally cured systems, suggested that an 80/20 mixture of tetra(oleyloxy) silane and tetra(propoxysilane) gave the best compromise between desirable mechanical and frictional properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reported herein are measured absolute single, double, and triple charge exchange (CE) cross sections for the highly charged ions (HCIs) Cq+ (q=5,6), Oq+ (q=6,7,8), and Neq+ (q=7,8) colliding with the molecular species H2O, CO, and CO2. Present data can be applied to interpreting observations of x-ray emissions from comets as they interact with the solar wind. As such, the ion impact energies of 7.0q keV (1.62–3.06 keV/amu) are representative of the fast solar wind, and data at 1.5q keV for O6+ (0.56 keV/amu) on CO and CO2 and 3.5q keV for O5+ (1.09 keV/amu) on CO provide checks of the energy dependence of the cross sections at intermediate and typical slow solar wind velocities. The HCIs are generated within a 14 GHz electron cyclotron resonance ion source. Absolute CE measurements are made using a retarding potential energy analyzer, with measurement of the target gas cell pressure and incident and final ion currents. Trends in the cross sections are discussed in light of the classical overbarrier model (OBM), extended OBM, and with recent results of the classical trajectory Monte Carlo theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absolute photoionization cross-section measurements for a mixture of ground and metastable states of Xe4+, Xe5+, and Xe6+ are reported in the photon energy range of 4d -> nf transitions, which occur within or adjacent to the 13.5 nm window for extreme ultraviolet lithography light source development. The reported values allow the quantification of opacity effects in xenon plasmas due to these 4d -> nf autoionizing states. The oscillator strengths for the 4d -> 4f and 4d -> 5f transitions in Xeq+ (q=1-6) ions are calculated using nonrelativistic Hartree-Fock and random phase approximations. These are compared with published experimental values for Xe+ to Xe3+ and with the values obtained from the present experimental cross-section measurements for Xe4+ to Xe6+. The calculations assisted in the determination of the metastable content in the ion beams for Xe5+ and Xe6+. The experiments were performed by merging a synchrotron photon beam generated by an undulator beamline of the Advanced Light Source with an ion beam produced by an electron cyclotron resonance ion source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Feq+ (q = 5-13) ions with H2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe9+ ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H2O up to H2O10+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contrary to the traditional view, recent studies suggest that diabetes mellitus has an adverse influence on male reproductive function. Our aim was to determine the effect of diabetes on the testicular environment by identifying and then assessing perturbations in small molecule metabolites. Testes were obtained from control and streptozotocin-induced diabetic C57BL/6 mice, 2, 4 and 8 weeks post-treatment. Diabetic status was confirmed by glycated haemoglobin, non-fasting blood glucose, physiological condition and body weight. A novel extraction procedure was utilized to obtain protein free, low-molecular weight, water soluble extracts which were then assessed using H-1 nuclear magnetic resonance spectroscopy. Principal component analysis of the derived profiles was used to classify any variations, and specific metabolites were identified based on their spectral pattern. Characteristic metabolite profiles were identified for control and type 1 diabetic animals with the most distinctive being from mice with the largest physical deterioration and loss of body weight. Eight streptozotocin-treated animals did not develop diabetes and displayed profiles similar to controls. Diabetic mice had decreases in creatine, choline and carnitine and increases in lactate, alanine and myo-inositol. Betaine levels were found to be increased in the majority of diabetic mice but decreased in a few animals with severe loss of body weight and physical condition. The association between perturbations in a number of small molecule metabolites known to be influential in sperm function, with diabetic status and physiological condition, adds further impetus to the proposal that diabetes influences important spermatogenic pathways and mechanisms in a subtle and previously unrecognized manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: There is a widely recognised need to develop effective Alzheimer's disease (AD) biomarkers to aid the development of disease-modifying treatments, to facilitate early diagnosis and to improve clinical care. This overview aims to summarise the utility of key neuroimaging and cerebrospinal fluid (CSF) biomarkers for AD, before focusing on the latest efforts to identify informative blood biomarkers. DESIGN: A literature search was performed using PubMed up to September 2011 for reviews and primary research studies of neuroimaging (magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and amyloid imaging), CSF and blood-based (plasma, serum and platelet) biomarkers in AD and mild cognitive impairment. Citations within individual articles were examined to identify additional studies relevant to this review. RESULTS: Evidence of AD biomarker potential was available for imaging techniques reflecting amyloid burden and neurodegeneration. Several CSF measures are promising, including 42 amino acid ß-amyloid peptide (Aß(42) ); total tau (T-tau) protein, reflecting axonal damage; and phosphorylated tau (P-tau), reflecting neurofibrillary tangle pathology. Studies of plasma Aß have produced inferior diagnostic discrimination. Alternative plasma and platelet measures are described, which represent potential avenues for future research. CONCLUSIONS: Several imaging and CSF markers demonstrate utility in predicting AD progression and determining aetiology. These require standardisation before forming core elements of diagnostic criteria. The enormous potential available for identifying a minimally-invasive, easily-accessible blood measure as an effective AD biomarker currently remains unfulfilled. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-energy electron diffraction, X-ray photoelectron spectroscopy, high-resolution electron energy-loss spectroscopy, scanning tunneling microscopy, and temperature-programmed reaction spectrometry results are reported for the structural and reactive behavior of alumina films grown on Pt(111) as a function of thickness and oxidation temperature. Submonolayer Al films undergo compete oxidation at 300 K, annealing at 1100 K resulting in formation of somewhat distorted crystalline gamma-alumina, Thicker deposits require 800 K oxidation to produce Al2O3, and these too undergo crystallization at 800 K, yielding islands of apparently undistorted gamma-alumina on the Pt(111) surface. Oxidation of a p(2 x 2) Pt3Al surface alloy occurs only at>800 K, resulting in Al extraction, These alumina films on Pt(lll) markedly increase the coverage of adsorbed SO4 resulting from SO2 chemisorption onto oxygen-precovered surfaces. This results in enhanced propane uptake and subsequent reactivity relative to SO4/Pt(111). A bifunctional mechanism is proposed to account for our observations, and the relevance of these to an understanding of the corresponding dispersed systems is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemisorption and reactivity of SO2 on Pt{111} have been studied by HREELS, XPS, NEXAFS and temperature-programmed desorption. At 160 K SO2 adsorbs intact at high coverages, with eta(2) S-O coordination to the surface. On annealing to 270 K, NEXAFS indicates the SO2 molecular plane essentially perpendicular to the surface. Preadsorbed O-a reacts with SO2 to yield adsorbed SO4, identified as the key surface species responsible for SO2-promoted catalytic alkane oxidation. Coadsorbed CO or propene efficiently reduce SO2 overlayers to deposit S-a, and the implications of this for catalytic systems are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

XPS, TPD and HREEL results indicate that molecular pyrrole is a fragile adsorbate on clean Pd{111}. At 200 K and for low coverages, the molecule remains intact and adopts an almost flat-lying geometry. With increasing coverage, pyrrole molecules tilt away from the surface and undergo N-H bond cleavage to form strongly tilted pyrrolyl (C4H4N) species. In addition, a weakly bound, strongly tilted form of molecular pyrrole is observed at coverages approaching saturation. Heating pyrrole monolayers results in desorption of similar to 15% of the overlayer as molecular pyrrole and N-a+ C4H4Na recombination with formation of hat-lying pyrrole molecules. This strongly bound species undergoes decomposition to adsorbed CN, CHx and H, leading ultimately to desorption of HCN and H-2. The implications of these results for the production of pyrrole by a heterogeneously catalysed route are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

XPS, HREELS, ARUPS and Delta phi data show that furan chemisorbs non-dissociatively on Pd{111} at 175 K, the molecular plane being significantly tilted with respect to the surface normal. Bonding involves both the oxygen lone pair and significant a interaction with the substrate. The degree of decomposition that accompanies molecular desorption is a strong function of coverage: similar to 40% of the adsorbate desorbs molecularly from the saturated monolayer. Decomposition occurs via decarbonylation to yield COa and H-a followed by desorption rate limited loss of H-2 and CO. It seems probable that an adsorbed C3H3 species formed during this process undergoes subsequent stepwise dehydrogenation ultimately yielding H-2 and C-a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that low-density lipoprotein (LDL) modified by glycation may be more susceptible to oxidation and thus, enhance its atherogenicity. Using affinity chromatography, LDL glycated in vivo (G-LDL) and relatively nonglycated. (N-LDL) subfractions can be isolated from the same individual. The extent of and susceptibility to oxidation of N-LDL compared with G-LDL was determined in 15 type 1 diabetic patients. Total LDL was isolated and separated by boronate affinity chromatography into relatively glycated (G-) and nonglycated (N-) subfractions. The extent of glycation, glycoxidation, and lipoxidation, lipid soluble antioxidant content, susceptibility to in vitro oxidation, and nuclear magnetic resonance (NMR)-determined particle size and subclass distribution were determined for each subfraction. Glycation, (fructose-lysine) was higher in G-LDL versus N-LDL, (0.28 +/- 0.08 v 0.13 +/- 0.04 mmol/mol lysine, P <.0001). However, levels of glycoxidation/lipoxidation products and of antioxidants were similar or lower in G-LDL compared with N-LDL and were inversely correlated with fructose-lysine (FL) concentrations in G-LDL, but positively correlated in N-LDL. In vitro LDL (CuCl2) oxidation demonstrated a longer lag time for oxidation of G-LDL than N-LDL (50 +/- 0.16 v 37 +/- 0.15 min, P <.01), but there was no difference in the rate or extent of lipid oxidation, nor in any aspect of protein oxidation. Mean LDL particle size and subclass distribution did not differ between G-LDL and N-LDL. Thus, G-LDL from well-controlled type 1 diabetic patients is not more modified by oxidation, more susceptible to oxidation, or smaller than relatively N-LDL, suggesting alternative factors may contribute to the atherogenicity of LDL from type 1 diabetic patients.