997 resultados para Electron microscopes.
Resumo:
The monovalent potassium doped manganites Pr0.6Sr 0.4-xKxMnO3 (x = 0.05-0.2) are characterized using the complementary magnetic susceptibility and electron resonance methods. In paramagnetic phase the temperature variations of the inverse magnetic susceptibility and the inverse intensity of resonance signal obey the Curie-Weiss law. A similarity in temperature variation of resonance signal width and the adiabatic polaron conductivity points to the polaron mechanism controlling the resonance linewidth. The low temperature limit of the pure paramagnetic phase is determined from the electron resonance spectra revealing the mixed phase spread down to the Curie temperature. © 2013 Elsevier B.V. All rights reserved.
Resumo:
We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO4 polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap, which reduces parasitic effects and enables multiple, independently controllable gates. The method's simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices. © 2013 American Chemical Society.
Resumo:
We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the nonequilibrium electron gas decay at early times. © OSA 2012.
Resumo:
This study examined the toxic effects of microcystins on mitochondria of liver and heart of rabbit in vivo. Rabbits were injected i.p. with extracted microcystins (mainly MC-RR and -LR) at two doses, 12.5 and 50 MCLReq. mu g/kg bw, and the changes in mitochondria of liver and heart were studied at 1, 3,12, 24 and 48 h after injection. MCs induced damage of mitochondrial morphology and lipid peroxidation in both liver and heart. MCs influenced respiratory activity through inhibiting NADH dehydrogenase and enhancing succinate dehydrogenase (SDH). MCs altered Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of mitochondria and consequently disrupted ionic homeostasis, which might be partly responsible for the loss of mitochondrial membrane potential (MMP). MCs were highly toxic to mitochondria with more serious damage in liver than in heart. Damage of mitochondria showed reduction at 48 h in the low dose group, suggesting that the low dose of MCs might have stimulated a compensatory response in the rabbits. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We report the observation of strongly temperature (T)-dependent spectral lines in electronic Raman-scattering spectra of graphite in a high magnetic field up to 45 T applied along the c axis. The magnetic field quantizes the in-plane motion, while the out-of-plane motion remains free, effectively reducing the system dimension from 3 to 1. Optically created electron-hole pairs interact with, or shake up, the one-dimensional Fermi sea in the lowest Landau subbands. Based on the Tomonaga-Luttinger liquid theory, we show that interaction effects modify the spectral line shape from (ω-Δ)-1/2 to (ω-Δ)2α-1/2 at T = 0. At finite T, we predict a thermal broadening factor that increases linearly with T. Our model reproduces the observed T-dependent line shape, determining the electron-electron interaction parameter α to be ∼0.05 at 40 T. © 2014 American Physical Society.
Resumo:
Redescription of Balantidium ctenopharyngodoni "Chen (Acta Hydrobiol Sin 1:123-164, 1955)", collected from the hindgut of grass carp (Ctenopharyngodon idella), especially the segment of 6-10 cm upstream from the anus, from Honghu Lake, Hubei Province, central China in November 2005, is presented in this paper to complete Chen's description at both light and scanning electron microscopic levels. Some revisions were done: the vestibulum is fairly symmetrical, with compactly arranged cilia rather than assembled membrane bordering on the left vestibular side; four contractile vacuoles actually exist in the latter body, three of which surround the posterior portion of the macronucleus, whereas the fourth lies antero-left to it. Somatic monokinetids were compared among the species of genus Balantidium. The cysts were described, and possible infection routes of B. ctenopharyngodoni were also discussed.
Resumo:
The enhanced emission performance of a graphene/Mo hybrid gate electrode integrated into a nanocarbon field emission micro-triode electron source is presented. Highly electron transparent gate electrodes are fabricated from chemical vapor deposited bilayer graphene transferred to Mo grids with experimental and simulated data, showing that liberated electrons efficiently traverse multi-layer graphene membranes with transparencies in excess of 50-68%. The graphene hybrid gates are shown to reduce the gate driving voltage by 1.1 kV, whilst increasing the electron transmission efficiency of the gate electrode significantly. Integrated intensity maps show that the electron beam angular dispersion is dramatically improved (87.9°) coupled with a 63% reduction in beam diameter. Impressive temporal stability is noted (<1.0%) with surprising negligible long-term damage to the graphene. A 34% increase in triode perveance and an amplification factor 7.6 times that of conventional refractory metal grid gate electrode-based triodes are noted, thus demonstrating the excellent stability and suitability of graphene gates in micro-triode electron sources. A nanocarbon field emission triode with a hybrid gate electrode is developed. The graphene/Mo gate shows a high electron transparency (50-68%) which results in a reduced turn-on potential, increased beam collimation, reduced beam diameter (63%), enhanced stability (<1% variation), a 34% increase in perveance, and an amplification 7.6 times that of equivalent conventional refractory metal gate triodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A sediment core was collected from the centre of Wanghu Lake, in the Middle Reaches of the Yangtze River. The recent part of the core was dated using a combination of Pb-210 and spheroidal carbonaceous particle (SCP) techniques. Extrapolating this chronology dated the laminated section of the core, between 723 and 881 mm, to the first half of the 18th century and this section was selected for detailed study. The thicknesses of the laminae were measured using reflecting and polarizing microscopes whilst geochemistry was determined by an electron probe. The thickness of the dark layers was found to be positively correlated with titanium concentrations, and negatively correlated with aluminium and potassium concentrations. The thickness of the light layers was found to be negatively correlated with the concentrations of titanium. It is concluded that the dark layers were deposited from the Fushui River, a tributary of the Yangtze River, under periods of normal flow whilst the light Layers were mainly deposited from the Yangtze River itself during flood periods. Documentary evidence for floods occurring in the take catchment corresponded with thick laminations of high titanium concentration. Further, two of the three thickest, light laminations with low titanium concentrations were found to be synchronous with recorded flood dates of the main Yangtze River in its Middle Reaches, but one was synchronous with a local drought. These data suggest that the Lake sediment provides an archive of the relative water levels of the Yangtze and Wanghu including floods of both the main Yangtze River and the local hydrological regime. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The ability to accurately design carbon nanofibre (CN) field emitters with predictable electron emission characteristics will enable their use as electron sources in various applications such as microwave amplifiers, electron microscopy, parallel beam electron lithography and advanced Xray sources. Here, highly uniform CN arrays of controlled diameter, pitch and length were fabricated using plasma enhanced chemical vapour deposition and their individual emission characteristics and field enhancement factors were probed using scanning anode field emission mapping. For a pitch of 10 µm and a CN length of 5 µm, the directly measured enhancement factors of individual CNs was 242, which was in excellent agreement with conventional geometry estimates (240). We show here direct empirical evidence that in regular arrays of vertically aligned CNs the overall enhancement factor is reduced when the pitch between emitters is less than half the emitter height, in accordance to our electrostatic simulations. Individual emitters showed narrow Gaussian-like field enhancement distributions, in excellent agreement with electric field simulations.