975 resultados para Electroencephalogram(ECG)
Resumo:
Long-term electrocardiography (ECG) featuring adequate atrial and ventricular signal quality is highly desirable. Routinely used surface leads are limited in atrial signal sensitivity and recording capability impeding complete ECG delineation, i.e. in the presence of supraventricular arrhythmias. Long-term esophageal ECG might overcome these limitations but requires a dedicated lead system and recorder design. To this end, we analysed multiple-lead esophageal ECGs with respect to signal quality by describing the ECG waves as a function of the insertion level, interelectrode distance, electrode shape and amplifier's input range. The results derived from clinical data show that two bipolar esophageal leads, an atrial lead with short (15 mm) interelectrode distance and a ventricular lead with long (80 mm) interelectrode distance provide non-inferior ventricular signal strength and superior atrial signal strength compared to standard surface lead II. High atrial signal slope in particular is observed with the atrial esophageal lead. The proposed esophageal lead system in combination with an increased recorder input range of ±20 mV minimizes signal loss due to excessive electrode motion typically observed in esophageal ECGs. The design proposal might help to standardize long-term esophageal ECG registrations and facilitate novel ECG classification systems based on the independent detection of ventricular and atrial electrical activity.
Resumo:
Background: Ischemia monitoring cannot always be performed by 12-lead ECG. Hence, the individual performance of the ECG leads is crucial. No experimental data on the ECG's specificity for transient ischemia exist. Methods: In 45 patients a 19-lead ECG was registered during a 1-minute balloon occlusion of a coronary artery (left anterior descending artery [LAD], right coronary artery [RCA] or left circumflex artery [LCX]). ST-segment shifts and sensitivity/specificity of the leads were measured. Results: During LAD occlusion, V3 showed maximal ST-segment elevation (0.26 mV [IQR 0.16–0.33 mV], p = 0.001) and sensitivity/specificity (88% and 80%). During RCA occlusion, III showed maximal ST-elevation (0.2 mV [IQR 0.09–0.26 mV], p = 0.004), aVF had the best sensitivity/specificity (85% and 68%). During LCX occlusion, V6 showed maximal ST-segment elevation (0.04 mV [IQR 0.02–0.14 mV], p = 0.005), and sensitivity/specificity was (31%/92%) but could be improved (63%/72%) using an optimized cut-off for ischemia. Conclusion: V3, aVF and V6 show the best performance to detect transient ischemia.
Resumo:
BACKGROUND: Quantitative myocardial PET perfusion imaging requires partial volume corrections. METHODS: Patients underwent ECG-gated, rest-dipyridamole, myocardial perfusion PET using Rb-82 decay corrected in Bq/cc for diastolic, systolic, and combined whole cycle ungated images. Diastolic partial volume correction relative to systole was determined from the systolic/diastolic activity ratio, systolic partial volume correction from phantom dimensions comparable to systolic LV wall thicknesses and whole heart cycle partial volume correction for ungated images from fractional systolic-diastolic duration for systolic and diastolic partial volume corrections. RESULTS: For 264 PET perfusion images from 159 patients (105 rest-stress image pairs, 54 individual rest or stress images), average resting diastolic partial volume correction relative to systole was 1.14 ± 0.04, independent of heart rate and within ±1.8% of stress images (1.16 ± 0.04). Diastolic partial volume corrections combined with those for phantom dimensions comparable to systolic LV wall thickness gave an average whole heart cycle partial volume correction for ungated images of 1.23 for Rb-82 compared to 1.14 if positron range were negligible as for F-18. CONCLUSION: Quantitative myocardial PET perfusion imaging requires partial volume correction, herein demonstrated clinically from systolic/diastolic absolute activity ratios combined with phantom data accounting for Rb-82 positron range.
Resumo:
Background Atrial fibrillation (AF) is common and may have severe consequences. Continuous long-term electrocardiogram (ECG) is widely used for AF screening. Recently, commercial ECG analysis software was launched, which automatically detects AF in long-term ECGs. It has been claimed that such tools offer reliable AF screening and save time for ECG analysis. However, this has not been investigated in a real-life patient cohort. Objective To investigate the performance of automatic software-based screening for AF in long-term ECGs. Methods Two independent physicians manually screened 22,601 hours of continuous long-term ECGs from 150 patients for AF. Presence, number, and duration of AF episodes were registered. Subsequently, the recordings were screened for AF by an established ECG analysis software (Pathfinder SL), and its performance was validated against the thorough manual analysis (gold standard). Results Sensitivity and specificity for AF detection was 98.5% (95% confidence interval 91.72%–99.96%) and 80.21% (95% confidence interval 70.83%–87.64%), respectively. Software-based AF detection was inferior to manual analysis by physicians (P < .0001). Median AF duration was underestimated (19.4 hours vs 22.1 hours; P < .001) and median number of AF episodes was overestimated (32 episodes vs 2 episodes; P < .001) by the software. In comparison to extensive quantitative manual ECG analysis, software-based analysis saved time (2 minutes vs 19 minutes; P < .001). Conclusion Owing to its high sensitivity and ability to save time, software-based ECG analysis may be used as a screening tool for AF. An additional manual confirmatory analysis may be required to reduce the number of false-positive findings.
Resumo:
BACKGROUND Disrupted sleep is a common complaint of individuals with alcohol use disorder and in abstinent alcoholics. Furthermore, among recovering alcoholics, poor sleep predicts relapse to drinking. Whether disrupted sleep in these populations results from prolonged alcohol use or precedes the onset of drinking is not known. The aim of this study was to examine the sleep electroencephalogram (EEG) in alcohol-naïve, parental history positive (PH+), and negative (PH-) boys and girls. METHODS All-night sleep EEG recordings in 2 longitudinal cohorts (child and teen) followed at 1.5 to 3 year intervals were analyzed. The child and teen participants were 9/10 and 15/16 years old at the initial assessment, respectively. Parental history status was classified by Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria applied to structured interviews (DIS-IV) resulting in 14 PH- and 10 PH+ children and 14 PH- and 10 PH+ teens. Sleep data were visually scored in 30-second epochs using standard criteria. Power spectra were calculated for EEG derivations C3/A2, C4/A1, O2/A1, O1/A2 for nonrapid eye movement (NREM) and rapid eye movement (REM) sleep. RESULTS We found no difference between PH+ and PH- individuals in either cohort for any visually scored sleep stage variable. Spectral power declined in both cohorts across assessments for NREM and REM sleep in all derivations and across frequencies independent of parental history status. With regard to parental history, NREM sleep EEG power was lower for the delta band in PH+ teens at both assessments for the central derivations. Furthermore, power in the sigma band for the right occipital derivation in both NREM and REM sleep was lower in PH+ children only at the initial assessment. CONCLUSIONS We found no gross signs of sleep disruption as a function of parental history. Modest differences in spectral EEG power between PH+ and PH- children and teens indicate that a marker of parental alcohol history may be detectable in teens at risk for problem drinking.
Resumo:
Over the last two decades, imaging of the aorta has undergone a clinically relevant change. As part of the change non-invasive imaging techniques have replaced invasive intra-arterial digital subtraction angiography as the former imaging gold standard for aortic diseases. Computed tomography (CT) and magnetic resonance imaging (MRI) constitute the backbone of pre- and postoperative aortic imaging because they allow for imaging of the entire aorta and its branches. The first part of this review article describes the imaging principles of CT and MRI with regard to aortic disease, shows how both technologies can be applied in every day clinical practice, offering exciting perspectives. Recent CT scanner generations deliver excellent image quality with a high spatial and temporal resolution. Technical developments have resulted in CT scan performed within a few seconds for the entire aorta. Therefore, CT angiography (CTA) is the imaging technology of choice for evaluating acute aortic syndromes, for diagnosis of most aortic pathologies, preoperative planning and postoperative follow-up after endovascular aortic repair. However, radiation dose and the risk of contrast induced nephropathy are major downsides of CTA. Optimisation of scan protocols and contrast media administration can help to reduce the required radiation dose and contrast media. MR angiography (MRA) is an excellent alternative to CTA for both diagnosis of aortic pathologies and postoperative follow-up. The lack of radiation is particularly beneficial for younger patients. A potential side effect of gadolinium contrast agents is nephrogenic systemic fibrosis (NSF). In patients with high risk of NSF unenhanced MRA can be performed with both ECG- and breath-gating techniques. Additionally, MRI provides the possibility to visualise and measure both dynamic and flow information.
Resumo:
The coronary collateral circulation is an alternative source of blood supply to a myocardial area jeopardized by the failure of the stenotic or occluded vessel to provide enough blood flow to this region. Until recently, only qualitative or semiqualitative methods have been available for the assessment of the coronary collateral circulation in humans, such as the patient's history of walk-through angina pectoris, the registration of intracoronary ECG signs for myocardial ischaemia or angina pectoris during coronary occlusion, or coronary angiographic classification (score 0-3) of collaterals. Studies of coronary wedge pressure measurements distal of a balloon-occluded coronary artery and the recent advent of ultrathin pressure and Doppler angioplasty guidewires have made it possible to obtain pressure or flow velocity data in remote vascular areas and, thus, to calculate functional variables for coronary collateral flow. Those coronary occlusive pressure- and flow velocity-derived parameters express collateral flow as a fraction of antegrade coronary flow during vessel patency of the collateral-receiving vessel. They are both interchangeable, and they have been validated in comparison to 'traditional' methods and against each other. The possibility of accurately measuring coronary collateral flow indices in humans undergoing coronary balloon angioplasty opens areas of investigation of the pathogenesis, pathophysiology and therapeutic promotion of the collateral circulation previously reserved for exclusively experimental studies. The purpose of this article is to review several clinically available methods for the functional characterization of the coronary collateral circulation.
Resumo:
BACKGROUND The function of naturally existing internal mammary (IMA)-to-coronary artery bypasses and their quantitative effect on myocardial ischemia are unknown. METHODS AND RESULTS The primary end point of this study was collateral flow index (CFI) obtained during two 1-minute coronary artery balloon occlusions, the first with and the second without simultaneous distal IMA occlusion. The secondary study end point was the quantitatively determined intracoronary ECG ST-segment elevation. CFI is the ratio of simultaneously recorded mean coronary occlusive pressure divided by mean aortic pressure both subtracted by mean central venous pressure. A total of 180 pairs of CFI measurements were performed among 120 patients. With and without IMA occlusion, CFI was 0.110±0.074 and 0.096±0.072, respectively (P<0.0001). The difference of CFI obtained in the presence minus CFI obtained in the absence of IMA occlusion was highest and most consistently positive during left IMA with left anterior descending artery occlusion and during right IMA with right coronary artery occlusion (ipsilateral occlusions): 0.033±0.044 and 0.025±0.027, respectively. This CFI difference was absent during right IMA with left anterior descending artery occlusion and during left IMA with right coronary artery occlusion (contralateral occlusions): -0.007±0.034 and 0.001±0.023, respectively (P=0.0002 versus ipsilateral occlusions). The respective CFI differences during either IMA with left circumflex artery occlusion were inconsistently positive. Intracoronary ECG ST-segment elevations were significantly reduced during ipsilateral IMA occlusions but not during contralateral or left circumflex artery occlusions. CONCLUSION There is a functional, ischemia-reducing extracardiac coronary artery supply via ipsilateral but not via contralateral natural IMA bypasses. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCTO1676207.
Resumo:
INTRODUCTION: Experience-based adaptation of emotional responses is an important faculty for cognitive and emotional functioning. Professional musicians represent an ideal model in which to elicit experience-driven changes in the emotional processing domain. The changes of the central representation of emotional arousal due to musical expertise are still largely unknown. The aim of the present study was to investigate the electroencephalogram (EEG) correlates of experience-driven changes in the domain of emotional arousal. Therefore, the differences in perceived (subjective arousal via ratings) and physiologically measured (EEG) arousal between amateur and professional musicians were examined. PROCEDURE: A total of 15 professional and 19 amateur musicians listened to the first movement of Ludwig van Beethoven's 5th symphony (duration=∼7.4min), during which a continuous 76-channel EEG was recorded. In a second session, the participants evaluated their emotional arousal during listening. In a tonic analysis, we examined the average EEG data over the time course of the music piece. For a phasic analysis, a fast Fourier transform was performed and covariance maps of spectral power were computed in association with the subjective arousal ratings. RESULTS: The subjective arousal ratings of the professional musicians were more consistent than those of the amateur musicians. In the tonic EEG analysis, a mid-frontal theta activity was observed in the professionals. In the phasic EEG, the professionals exhibited an increase of posterior alpha, central delta, and beta rhythm during high arousal. DISCUSSION: Professionals exhibited different and/or more intense patterns of emotional activation when they listened to the music. The results of the present study underscore the impact of music experience on emotional reactions.
Resumo:
In patients diagnosed with pharmaco-resistant epilepsy, cerebral areas responsible for seizure generation can be defined by performing implantation of intracranial electrodes. The identification of the epileptogenic zone (EZ) is based on visual inspection of the intracranial electroencephalogram (IEEG) performed by highly qualified neurophysiologists. New computer-based quantitative EEG analyses have been developed in collaboration with the signal analysis community to expedite EZ detection. The aim of the present report is to compare different signal analysis approaches developed in four different European laboratories working in close collaboration with four European Epilepsy Centers. Computer-based signal analysis methods were retrospectively applied to IEEG recordings performed in four patients undergoing pre-surgical exploration of pharmaco-resistant epilepsy. The four methods elaborated by the different teams to identify the EZ are based either on frequency analysis, on nonlinear signal analysis, on connectivity measures or on statistical parametric mapping of epileptogenicity indices. All methods converge on the identification of EZ in patients that present with fast activity at seizure onset. When traditional visual inspection was not successful in detecting EZ on IEEG, the different signal analysis methods produced highly discordant results. Quantitative analysis of IEEG recordings complement clinical evaluation by contributing to the study of epileptogenic networks during seizures. We demonstrate that the degree of sensitivity of different computer-based methods to detect the EZ in respect to visual EEG inspection depends on the specific seizure pattern.
Resumo:
OBJECTIVE To investigate pathological findings in the susceptibility weighted imaging (SWI) of patients experiencing convulsive (CSE) or non-convulsive status epilepticus (NCSE) with focal hyperperfusion in the acute setting. METHODS Twelve patients (six with NCSE confirmed by electroencephalogram (EEG) and six patients with CSE with seizure event clinically diagnosed) underwent MRI in this acute setting (mean time between onset of symptoms and MRI was 3 h 8 min), including SWI, dynamic susceptibility contrast MR imaging (DSC) and diffusion-weighted imaging (DWI). MRI sequences were retrospectively evaluated and compared with EEG findings (10/12 patients), and clinical symptoms. RESULTS Twelve out of 12 (100 %) patients showed a focal parenchymal area with pseudo-narrowed cortical veins on SWI, associated with focal hyperperfused areas (increased cerebral blood flow (CBF) and mean transit time (MTT) shortening), and cortical DWI restriction in 6/12 patients (50 %). Additionally, these areas were associated with ictal or postical EEG patterns in 8/10 patients (80 %). Most frequent acute clinical findings were aphasia and/or hemiparesis in eight patients, and all of them showed pseudo-narrowed veins in those parenchymal areas responsible for these symptoms. CONCLUSION In this study series with CSE and NCSE patients, SWI showed focally pseudo-narrowed cortical veins in hyperperfused and ictal parenchymal areas. Therefore, SWI might have the potential to identify an ictal region in CSE/NCSE. KEY POINTS • The focal ictal brain regions show hyperperfusion in DSC MR-perfusion imaging. • SWI shows focally diminished cortical veins in hyperperfused ictal regions. • SWI has the potential to identify a focal ictal region in CSE/NCSE.
Resumo:
Most previous neurophysiological studies evoked emotions by presenting visual stimuli. Models of the emotion circuits in the brain have for the most part ignored emotions arising from musical stimuli. To our knowledge, this is the first emotion brain study which examined the influence of visual and musical stimuli on brain processing. Highly arousing pictures of the International Affective Picture System and classical musical excerpts were chosen to evoke the three basic emotions of happiness, sadness and fear. The emotional stimuli modalities were presented for 70 s either alone or combined (congruent) in a counterbalanced and random order. Electroencephalogram (EEG) Alpha-Power-Density, which is inversely related to neural electrical activity, in 30 scalp electrodes from 24 right-handed healthy female subjects, was recorded. In addition, heart rate (HR), skin conductance responses (SCR), respiration, temperature and psychometrical ratings were collected. Results showed that the experienced quality of the presented emotions was most accurate in the combined conditions, intermediate in the picture conditions and lowest in the sound conditions. Furthermore, both the psychometrical ratings and the physiological involvement measurements (SCR, HR, Respiration) were significantly increased in the combined and sound conditions compared to the picture conditions. Finally, repeated measures ANOVA revealed the largest Alpha-Power-Density for the sound conditions, intermediate for the picture conditions, and lowest for the combined conditions, indicating the strongest activation in the combined conditions in a distributed emotion and arousal network comprising frontal, temporal, parietal and occipital neural structures. Summing up, these findings demonstrate that music can markedly enhance the emotional experience evoked by affective pictures.
Resumo:
To test whether humans can encode words during sleep we played everyday words to men while they were napping and assessed priming from sleep played words following waking. Words were presented during non rapid eye movement (NREM) sleep. Priming was assessed using a semantic and a perceptual priming test. These tests measured differences in the proces sing of words that had been or had not been played during sleep. Synonyms to sleep played words were the targets in the semantic priming test that tapped the meaning of sleep played words. All men responded to sleep played words by producing up states in their electroencephalogram. Up states are NREM sleep specific phases of briefly increased neuronal excitability. The word evoked up states might have promoted word processing during sleep. Yet, the mean performance in the priming tests administered following sleep was at chance level, which suggests that participants as a group failed to show priming following sleep. However, performance in the two priming tests was positively correlated to each other and to the magnitude of the word evoked up states. Hence, the larger a participant’s word evoked up states, the larger his perceptual and semantic priming. Those participants who scored high on all variables must have encoded words during sleep. We conclude that some humans are able to encode words during sleep, but more research is needed to pin down the factors that modulate this ability.
Resumo:
With the progressing course of Alzheimer's disease (AD), deficits in declarative memory increasingly restrict the patients' daily activities. Besides the more apparent episodic (biographical) memory impairments, the semantic (factual) memory is also affected by this neurodegenerative disorder. The episodic pathology is well explored; instead the underlying neurophysiological mechanisms of the semantic deficits remain unclear. For a profound understanding of semantic memory processes in general and in AD patients, the present study compares AD patients with healthy controls and Semantic Dementia (SD) patients, a dementia subgroup that shows isolated semantic memory impairments. We investigate the semantic memory retrieval during the recording of an electroencephalogram, while subjects perform a semantic priming task. Precisely, the task demands lexical (word/nonword) decisions on sequentially presented word pairs, consisting of semantically related or unrelated prime-target combinations. Our analysis focuses on group-dependent differences in the amplitude and topography of the event related potentials (ERP) evoked by related vs. unrelated target words. AD patients are expected to differ from healthy controls in semantic retrieval functions. The semantic storage system itself, however, is thought to remain preserved in AD, while SD patients presumably suffer from the actual loss of semantic representations.
Resumo:
The capacity to inhibit inappropriate responses is crucial for goal-directed behavior. Inhibiting such responses seems to come more easily to some of us than others, however. From where do these individual differences originate? Here, we measured 263 participants' neural baseline activation using resting electroencephalogram. Then, we used this stable neural marker to predict a reliable electrophysiological index of response inhibition capacity in the cued Continuous Performance Test, the NoGo-Anteriorization (NGA). Using a source-localization technique, we found that resting delta, theta, and alpha1 activity in the left middle frontal gyrus and resting alpha1 activity in the right inferior frontal gyrus were negatively correlated with the NGA. As a larger NGA is thought to represent better response inhibition capacity, our findings demonstrate that lower levels of resting slow-wave oscillations in the lateral prefrontal cortex, bilaterally, are associated with a better response inhibition capacity.