900 resultados para Electrical conductivity measurements
Resumo:
The Caatinga biome is rich in endemic fish species fauna. The present study the results of fish faunal surveys conducted in the hydrographic basin of Piranhas-Assu of the Brazilian Caatinga biome. The fish samples collected were distributed in four orders (Characiformes, Perciformes, Siluriformes and Synbranchiformes), 11 families (Characidae, Curimatidae, Auchenipteridae, Anostomidae, Prochilodontidae, Erythrinidae, Cichlidae, Sciaenidae, Heptapteridae, Loricariidae, Synbranchidae) and 22 species, of which 17 are endemic and five have been introduced from other basins. The order Characiformes was the most representative in number of species (46,35% ) followed by Perciformes (35,38%), Siluriformes (17,44%) and Synbranchiformes (0,5%). The Nile tilapia, Oreochomis niloticus, the only exotic species, was most expressive in number of individuals (24.92%) followed by the native species piau preto, Leporinus piau (18,77 %). Considering the relative frequency of occurrence of the 22 species, 13 were constant, five were accessory and four were occasional. This study investigated the reproductive ecology of an endemic fish black piau, Leporinus piau from the Marechal Dutra reservoir, Acari, Rio Grande do Norte. Samplings were done on a monthly basis from January to December 2009, and a total of 211 specimens were captured. The environmental parameters such as rainfall, temperature, pH, electrical conductivity and dissolved oxygen of water were recorded. The sampled population showed a slight predominance of males (55%), however females were larger and heavier. Both sexes of L. piau showed positive allometric growth, indicating a higher increase of weight than length. The first sexual maturation of males occurred at smaller size, with 16.5 cm in total length than females (20.5 cm). During the reproductive period, the condition factor and gonadosomatic index (GSI) of L. piau were negatively correlated. This species has large oocytes with a high mean fecundity of 54.966 with synchronous oocyte development and total spawning
Resumo:
The Tungsten/copper composites are commonly used for electrical and thermal objectives like heat sinks and lectrical conductors, propitiating an excellent thermal and electrical conductivity. These properties are dependents of the composition, crystallite size and production process. The high energy milling of the powder of W-Cu produces an dispersion high and homogenization levels with crystallite size of W very small in the ductile Cu phase. This work discusses the effect of the HEM in preparation of the W-25Cu composite powders. Three techniques of powder preparation were utilized: milling the dry with powder of thick Cu, milling the dry with powder of fine Cu and milling the wet with powder of thick Cu. The form, size and composition of the particles of the powders milled were observed by scanning electron microscopy (SEM). The X-ray diffraction (XRD) was used to analyse the phases, lattice parameters, size and microstrain of the crystallite. The analyse of the crystalline structure of the W-25Cu powders milled made by Rietveld Method suggests the partial solid solubility of the constituent elements of the Cu in lattice of the W. This analyse shows too that the HEM produces the reduction high on the crystallite size and the increase in the lattice strain of both phases, this is more intense in the phase W
Resumo:
This work had to verify the influence of massará, while mortar component, in the process of formation of saltpeter in cementitious plaster walls of buildings. The massará is a ceramic material, texture areno usually found in large volumes argillaceous sediments in Teresina, Piaui State capital, which is associated with the Portland cement mortar form for fixing and finishing in construction. Saltpeter or flowering is a pathology that happens in gypsum wallboard, which invariably reaction between soluble salts present in materials, water and oxygen. This pathology, supposedly credited to massará caused its use to suffer significant reduction in the market of the buildings. Verify this situation with particular scientific rigor is part of the proposal of this work. Grading tests Were performed, consistency limits (LL, LP and IP), determination of potential hydrogen, capacity Exchange (CTC), electrical conductivity (EC), x-ray fluorescence (FRX) and x-ray diffraction (DRX). Massará analysed samples in number six, including sample plastering salitrado presented potential hydrogen medium 5.7 in water and 5.2 on KCl n and electrical conductivity (EC), equal to zero. These results pointed to the affirmative that massará is a material that does not provide salinity content that can be taken into consideration. It is therefore concluded that the material analyzed not competing, at least with respect to the presence of soluble salts, for the formation of saltpeter
Resumo:
In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite
Resumo:
Cells the solid oxide fuel are systems capable to directly convert energy of a chemical reaction into electric energy in clean, quiet way and if its components in the solid state differentiate of excessively the techniques for having all. Its more common geometric configurations are: the tubular one and to glide. Geometry to glide beyond the usual components (anode, cathode and electrolyte) needs interconnect and sealant. E the search for materials adjusted for these components is currently the biggest challenge found for the production of the cells. The sealants need to present chemical stability in high temperatures, to provoke electric isolation, to have coefficient of compatible thermal expansion with the excessively component ones. For presenting these characteristics the glass-ceramics materials are recommended for the application. In this work the study of the partial substitution of the ZrO2 for the Al2O3 in system LZS became it aiming at the formation of system LZAS, this with the addition of natural spodumene with 10, 20 and 30% in mass. The compositions had been casting to a temperature of 1500°C and later quickly cooled with the objective to continue amorphous. Each composition was worn out for attainment of a dust with average diameter of approximately 3μm and characterized by the techniques of DRX, FRX, MEV, dilatometric analysis and particle size analysis. Later the samples had been conformed and treated thermally with temperatures in the interval between 700-1000 °C, with platform of 10 minutes and 1 hour. The analyses for the treated samples had been: dilatometric analysis, DRX, FRX, electrical conductivity and tack. The results point with respect to the viability of the use of system LZAS for use as sealant a time that had presented good results as isolating electric, they had adhered to a material with similar α of the components of a SOFC and had presented steady crystalline phases
Resumo:
Continuous Synthesis by Solution Combustion was employed in this work aiming to obtain tin dioxide nanostructured. Basically, a precursor solution is prepared and then be atomized and sprayed into the flame, where its combustion occurs, leading to the formation of particles. This is a recent technique that shows an enormous potential in oxides deposition, mainly by the low cost of equipment and precursors employed. The tin dioxide (SnO2) nanostructured has been widely used in various applications, especially as gas sensors and varistors. In the case of sensors based on semiconducting ceramics, where surface reactions are responsible for the detection of gases, the importance of surface area and particle size is even greater. The preference for a nanostructured material is based on its significant increase in surface area compared to conventional microcrystalline powders and small particle size, which may benefit certain properties such as high electrical conductivity, high thermal stability, mechanical and chemical. In this work, were employed as precursor solution tin chloride dehydrate diluted in anhydrous ethyl alcohol. Were utilized molar ratio chloride/solvent of 0,75 with the purpose of investigate its influence in the microstructure of produced powder. The solution precursor flux was 3 mL/min. Analysis with X-ray diffraction appointed that a solution precursor with molar ratio chloride/solvent of 0,75 leads to crystalline powder with single phase and all peaks are attributed to phase SnO2. Parameters as distance from the flame with atomizer distance from the capture system with the pilot, molar ratio and solution flux doesn t affect the presence of tin dioxide in the produced powder. In the characterization of the obtained powder techniques were used as thermogravimetric (TGA) and thermodiferential analysis (DTA), particle size by laser diffraction (GDL), crystallographic analysis by X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and electrical conductivity analysis. The techniques used revealed that the SnO2 exhibits behavior of a semiconductor material, and a potentially promising material for application as varistor and sensor systems for gas
Resumo:
The present work deals with the synthesis of materials with perovskite structure with the intention of using them as cathodes in fuel cells SOFC type. The perovskite type materials were obtained by chemical synthesis method, using gelatin as the substituent of citric acid and ethylene glycol, and polymerizing acting as chelating agent. The materials were characterized by X-ray diffraction, thermal analysis, spectroscopy Fourier transform infrared, scanning electron microscopy with EDS, surface area determination by the BET method and Term Reduction Program, TPR. The compounds were also characterized by electrical conductivity for the purpose of observing the possible application of this material as a cathode for fuel cells, solid oxide SOFC. The method using gelatin and polymerizing chelating agent for the preparation of materials with the perovskite structure allows the synthesis of crystalline materials and homogeneous. The results demonstrate that the route adopted to obtain materials were effective. The distorted perovskite structure have obtained the type orthorhombic and rhombohedral; important for fuel cell cathodes. The presentation material properties required of a candidate cathode materials for fuel cells. XRD analysis contacted by the distortion of the structures of the synthesized materials. The analyzes show that the electrical conductivity obtained materials have the potential to act as a cell to the cathode of solid oxide fuel, allowing to infer an order of values for the electrical conductivities of perovskites where LaFeO3 < LaNiO3 < LaNi0,5Fe0,5O3. It can be concluded that the activity of these perovskites is due to the presence of structural defects generated that depend on the method of synthesis and the subsequent heat treatment
Resumo:
Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases
Resumo:
Epoxy based nanocomposites with 1 wt % and 3 wt % of nanographite were processed by high shear mixing. The nanographite was obtained by chemical (acid intercalation), thermal (microwave expansion) and mechanical (ultrasonic exfoliation) treatments. The mechanical, electrical and thermal behavior of the nanocomposites was determined and evaluated as a function of the percentage of reinforcement. According to the experimental results, the electrical conductivity of epoxy was not altered by the addition of nanographite in the contents evaluated. However, based on the mechanical tests, nanocomposites with addition of 1 wt.% and 3 wt.% of nanographite showed increase in tensile strength of 16,62 % and 3,20 %, respectively, compared to the neat polymer. The smaller increase in mechanical strength of the nanocomposite with 3 wt.% of nanographite was related to the formation of agglomerates. The addition of 1 wt.% and 3 wt.% of nanographite also resulted in a decrease of 6,25 % and 17,60 %, respectively, in the relative density of the material. Thus, the specific strength of the nanocomposites was approximately 33,33 % greater when compared to the neat polymer. The addition of 1 wt.% and 3 wt.% of nanographite in the material increased the mean values of thermal conductivity in 28,33 % and 132,62 %, respectively, combined with a reduction of 26,11 % and 49,80 % in volumetric thermal capacity, respectively. In summary, it has been determined that an addition of nanographite of the order of 1 wt.% and 3 wt.% produced notable elevations in specific strength and thermal conductivity of epoxy
Resumo:
The Cruzeta impoundment, situated in the city of Cruzeta, hinterland of the state of the Rio Grande do Norte state has significant importance to the municipality as it represents the only source of supplying water to the region. It was hypothesized that the regional consequence of the global warming and the warming of surface water could substantially contribute the significant growth of the aquatic macrophytes in the years 2008-2009. The growth of these vegetation believed to be improved the degree of water transparency and as a consequence of the improved growth of phytoplankton species and chlorophyll biomass. At the same time the aquatic macrophyte could interact and compete potentially for the dissolved inorganic nutrients resources and the phytoplankton community. This study presents a comparison of years 2004-2005 when it did not have the expressive presence of the aquatic macrophyte community or restricted to the littoral region. In contrast, the years 2008-2009 showed a significant growth of the aquatic macrophyte in the Cruzeta/RN impoundments. The present study is an attempt to elucidate the significant presence of the aquatic macrophyte, Eichhornia crassipes, Ceratophyllum submersum, Nymphea sp and Pistia sp, and its interference on the ecology of phytoplankton. The samplings had been carried out from September of 2008 to April of 2009 and consistently between 10:00 h and 12:00 h with the aid of Van Dorn bottle and the plankton net of mesh size 20 Qm. The collections were made in three depths ie., surface, mid-column and bottom. The Physical-Chemical parameters such as pH, temperature, electrical conductivity and dissolved oxygen had been analyzed in situ. The samples for analysis of nutrients and chlorophyll were kept under refrigeration for posterior analysis in the laboratory. Phytoplankton samples were preserved in Lugol-iodine and kept for sedimentation for quali-quantitative analysis of phytoplankton. Enumeration of cells, colonies and filaments was done with the aid of Sedgwick-Rafter counting chamber and expressed as numbers/ml. Chlorophyll a was analyzed as a functional component of phytoplankton biomass and extracted with cold 90% acetone. The results indicate that the chlorophyll concentration varied between 5,65-8,08 Qg.L-1 for the dry period and 5,09-6,23 Qg.L-1 for the rainy period and showed considerable reduction when compared to the values to the 2004-2005 study period. The temperature was always presented higher in relation to the 2004-2005 study. Phytoplankton species showed a relative abundance of the Cyanophyceae for both the period of dry and rainy. The predominance species are filamentous Leptolymbya geophila Borzi (Planctolyngbya sp), Anabaena plankctônica Brunnthaler, Oscillatória limosa Ag. and Cylindrospermopsis raciborskii (Wolosz). The concentration of the nutrients such as nitrate and orto-phosfato had always presented higher values during the rainy period and the ammoniacal nitrogen retained moderate values in the dry period and a slight increase in rainy season. The main conclusions are the reduction of the concentration of chlorophyll, diversity of phytoplankton, and the increase in temperature and transparency of the water during the period of the study
Resumo:
Agricultural activity has direct consequences on the soil and water quality. Thus, assessing environmental impacts of this vital economic activity, through soil attribute analysis, is essential to the proposal of alternatives. The aim of this study was to analyze soil quality under different land management practices, conventional and organic. The study was carried out in a watershed of the Ibiuna municipality, SP, Brazil, an important supplier of agricultural products for the São Paulo metropolitan area. A hundred samples were collected, 20 in each type of land use: reforested areas, native vegetation, pasture, conventional cultivation and organic cultivation. The soil resistance to penetration, its pH (in water and KO), electrical conductivity, bulk density, particle density, porosity, soil color, soil texture and the percentages of carbon and nitrogen were analyzed. The data were statistically analyzed, searching for significant differences. The results of soil analysis showed great similarity between the organic and conventional culture, with no statistical differences. However, organic cultivation showed greater similarity to the soil of native vegetation in the percentage of carbon and nitrogen in soils compared to conventional culture. Thus, the discussion begins on a topic very little explored so far, and the results obtained should be further studied.
Resumo:
Os rios e lagos de várzea da província petrolífera de Urucu, na Amazônia Central, são amplamente colonizados por macrófitas aquáticas, que podem ser afetadas por acidentes durante a exploração e o transporte de petróleo. Entre as macrófitas, a espécie flutuante Eichhornia crassipes (aguapé) ocorre abundantemente na região; OBJETIVO: O objetivo desse estudo foi verificar o efeito de diferentes dosagens do petróleo de Urucu (0; 0,5; 1,5 e 3,0 L.m-2) na biomassa viva e morta de E. crassipes e em algumas características físicas e químicas da água; MÉTODOS: O experimento teve oitenta e quatro dias de duração. A cada sete dias foi determinada a biomassa (viva e morta) de E. crassipes e os valores de temperatura, pH, condutividade elétrica e oxigênio dissolvido da água; RESULTADOS: A dosagem de 0,5 L.m-2 foi suficiente para causar mortalidade parcial (48%) em E. crassipes após trinta e cinco dias de exposição ao petróleo. A dosagem de 3,0 L.m-2 causou mortalidade total (100%) em E. crassipes em oitenta e quatro dias de exposição. A decomposição do petróleo e da biomassa morta de E. crassipes provocam a redução do oxigênio dissolvido e do pH, e aumento da condutividade elétrica e de fósforo total na água; CONCLUSÕES: Nós concluímos que um derramamento de petróleo pode provocar mortalidade total em uma população de uma espécie de macrófita, mas não em uma outra. Isto pode alterar a diversidade de espécies de macrófitas na região impactada. No caso de Eichhornia crassipes e Pistia stratiotes, um derramamento de petróleo de Urucu pode favorecer E. crassipes, a espécie menos sensível ao petróleo.
Resumo:
The inorganic actives, represented mainly by microfine zinc oxide and titanium dioxide, have shown great potential to protect against large UV spectrum. The aim of this study is the development, characterization and analysis of stability in the short term of microemulsions containing inorganic fotoprotection agents. The microemulsions identified by the phases diagram containing the metallic oxides were produced by two different methods and subjected to the centrifugation test and thermal stress cycles, and subsequently characterized by macroscopic evaluation, test dilution, electrical conductivity, pH, particle size, and zeta potential. This study highlights the influence of the metal oxides addition in the structure and distribution of micelles in the microemulsions
Resumo:
Para testar o efeito da temperatura e do tempo de embebição nos valores de condutividade elétrica e verificar sua aplicabilidade para determinar a qualidade fisiológica de sementes de Dalbergia nigra (jacarandá-da-bahia), foram utilizadas sementes colhidos em três anos (lote I _ 1998; lote II _ 1997 e lote III - 1994). Inicialmente determinou-se o teor de água e depois conduziu-se os testes de germinação em laboratório e viveiro, utilizando-se quatro repetições de 25 sementes. Para estudar a condutividade elétrica (CE) foram utilizadas quatro repetições de 50 sementes. Cada subamostra foi colocada em recipiente contendo 75ml de água deionizada, embebidas por 6, 12, 18, 24, 30 e 36 horas, a 20, 25 e 30ºC. Sementes do lote II apresentaram maiores valores na primeira contagem da germinação, diferindo significativamente dos demais lotes. O lote III apresentou qualidade inferior. Com o aumento do período e da temperatura de embebição ocorreu aumento nos valores de CE das sementes dos três lotes. O lote III mostrou qualidade fisiológica inferior a dos lotes I e II, que apresentaram valores mais elevados de CE. Não houve diferenciação entre os lotes I e II. Concluiu-se que o teste de CE foi eficiente para diferenciar os lotes de sementes de Dalbergia nigra, com alto grau de associação com o teste de germinação.
Resumo:
O presente trabalho teve como objetivos verificar o efeito do número de sementes e do volume de água utilizada no teste de condutividade elétrica (CE) para avaliar o vigor de três lotes de sementes de Dalbergia nigra (jacarandá-da-bahia) e correlacionar esses resultados com os dados de germinação em laboratório e em viveiro. Os testes de germinação em laboratório e viveiro foram conduzidos com quatro repetições de 25 sementes. O teste de CE foi realizado com 25, 50 e 75 sementes embebidas a 75, 100 e 125ml de água, por diferentes períodos. A porcentagem de germinação e de plântulas normais em laboratório, indicaram o lote III como de qualidade inferior aos lotes I e II. A primeira contagem da germinação e o índice de velocidade de germinação em laboratório e a emergência, índice de velocidade de emergência e porcentagem de plântulas normais em viveiro identificaram o lote II como superior ao lote I e o III como inferior. A CE diminui com o aumento do volume de água e aumentou com o período de embebição. A diferenciação dos lotes foi mais eficiente, quando se utilizou 75ml de água deionizada e amostras de 50 sementes com pelo menos 36 horas de embebição, com valores de CE menores nos lotes I e II do que no lote II. Os coeficientes de correlação simples entre a CE e as demais características avaliadas, em laboratório e viveiro, foram elevados e significativos, evidenciando alta associação entre os mesmos. Assim, pode-se recomendar que o teste de CE seja conduzido a 25ºC, com amostras de 50 sementes embebidas em 75ml de água deionizada, por períodos iguais ou superiores a 36 horas de embebição, para determinar a qualidade fisiológica de lotes de sementes de jacarandá-da-bahia.