965 resultados para Elastic scattering.
Resumo:
A new anisotropic elastic-viscoplastic damage constitutive model for bone is proposed using an eccentric elliptical yield criterion and nonlinear isotropic hardening. A micromechanics-based multiscale homogenization scheme proposed by Reisinger et al. is used to obtain the effective elastic properties of lamellar bone. The dissipative process in bone is modeled as viscoplastic deformation coupled to damage. The model is based on an orthotropic ecuntric elliptical criterion in stress space. In order to simplify material identification, an eccentric elliptical isotropic yield surface was defined in strain space, which is transformed to a stress-based criterion by means of the damaged compliance tensor. Viscoplasticity is implemented by means of the continuous Perzyna formulation. Damage is modeled by a scalar function of the accumulated plastic strain D(κ) , reducing all element s of the stiffness matrix. A polynomial flow rule is proposed in order to capture the rate-dependent post-yield behavior of lamellar bone. A numerical algorithm to perform the back projection on the rate-dependent yield surface has been developed and implemented in the commercial finite element solver Abaqus/Standard as a user subroutine UMAT. A consistent tangent operator has been derived and implemented in order to ensure quadratic convergence. Correct implementation of the algorithm, convergence, and accuracy of the tangent operator was tested by means of strain- and stress-based single element tests. A finite element simulation of nano- indentation in lamellar bone was finally performed in order to show the abilities of the newly developed constitutive model.
Resumo:
For many years a combined analysis of pionic hydrogen and deuterium atoms has been known as a good tool to extract information on the isovector and especially on the isoscalar s-wave pN scattering length. However, given the smallness of the isoscalar scattering length, the analysis becomes useful only if the pion–deuteron scattering length is controlled theoretically to a high accuracy comparable to the experimental precision. To achieve the required few-percent accuracy one needs theoretical control over all isospin-conserving three-body pNN !pNN operators up to one order before the contribution of the dominant unknown (N†N)2pp contact term. This term appears at next-to-next-to-leading order in Weinberg counting. In addition, one needs to include isospin-violating effects in both two-body (pN) and three-body (pNN) operators. In this talk we discuss the results of the recent analysis where these isospin-conserving and -violating effects have been carefully taken into account. Based on this analysis, we present the up-to-date values of the s-wave pN scattering lengths.