986 resultados para Elastic dynamic modulus
Resumo:
Available empirical evidence regarding the degree of symmetry between European economies in the context of Monetary Unification is not conclusive. This paper offers new empirical evidence concerning this issue related to the manufacturing sector. Instead of using a static approach as most empirical studies do, we analyse the dynamic evolution of shock symmetry using a state-space model. The results show a clear reduction of asymmetries in terms of demand shocks between 1975 and 1996, with an increase in terms of supply shocks at the end of the period.
Resumo:
One of the most relevant properties of composite materials to be considered is stiffness. Fiberglass has been used traditionally as a fibrous reinforcing element when stiff materials are required. However, natural fibers are been exploited as replacements for synthetic fibers to satisfy environmental concerns. Among the different natural fibers, wood fibers show the combination of relatively high aspect ratio, good specific stiffness and strength, low density, low cost, and less variability than other natural fibers of such those from annual crops. In this work, composites from polypropylene and stone groundwood fibers from softwood were prepared and mechanically characterized under tensile loads. The Young’s moduli of the ensuing composites were analyzed and their micromechanics aspects evaluated. The reinforcing effect of stone groundwood fibers was compared to that of conventional reinforcement such fiberglass. The Halpin-Tsai model with the modification proposed by Tsai-Pagano accounted fairly for the behavior of PP composites reinforced with stone groundwood fibers. It was also demonstrated that the aspect ratio of the reinforcement plays a role in the Young’s modulus of injection molded specimens
Resumo:
We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1 MHz), while quantification of the interaction forces is obtained with finite-element numerical calculations. The results presented open a wide range of possibilities in a number of fields where the dielectric properties of materials need to be probed at the nanoscale and in a liquid environment.
Resumo:
We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1 MHz), while quantification of the interaction forces is obtained with finite-element numerical calculations. The results presented open a wide range of possibilities in a number of fields where the dielectric properties of materials need to be probed at the nanoscale and in a liquid environment.
Resumo:
Today´s organizations must have the ability to react to rapid changes in the market. These rapid changes cause pressure to continuously find new efficient ways to organize work practices. Increased competition requires businesses to become more effective and to pay attention to quality of management and to make people to understand their work's impact on the final result. The fundamentals in continmuois improvement are systematic and agile tackling of indentified individual process constraints and the fact tha nothin finally improves without changes. Successful continuous improvement requires management commitment, education, implementation, measurement, recognition and regeneration. These ingredients form the foundation, both for breakthrough projects and small step ongoing improvement activities. One part of the organization's management system are the quality tools, which provide systematic methodologies for identifying problems, defining their root causes, finding solutions, gathering and sorting of data, supporting decision making and implementing the changes, and many other management tasks. Organizational change management includes processes and tools for managing the people in an organizational level change. These tools include a structured approach, which can be used for effective transition of organizations through change. When combined with the understanding of change management of individuals, these tools provide a framework for managing people in change,
Resumo:
Chitosan was acetylated during 2, 5 and 10h and physical gels were obtained at different polymer concentrations in N,N-dimethylacetamide containing 5% of LiCl. Acetylation was confirmed by infrared spectroscopy and 13C NMR, and degrees of acetylation in the range of 0.82-0.91 were determined by NMR. The O-acetylation degree (0.12-0.15) was exclusively determined by a volumetric method. Rheological studies showed that the storage modulus values were smaller for the more acetylated samples and increased with the temperature and the polymer concentration. All the gels presented storage modulus superior to loss modulus, evidencing more elastic than viscous characteristics. The results obtained in this work suggest a gelation process based on a balance between O and N-acetylation and intermolecular bonds.
Resumo:
The preparation of oat-reinforced polypropylene nanocomposites with different fiber contents by means of melt-processing was investigated. Composite properties were evaluated by Scanning Electron Microscopy (SEM), Flexural Modulus, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Findings confirmed that the oat composite properties were affected by fiber type and content. Improvements in mechanical properties were obtained using fiber contents < 20% w.t.
Resumo:
Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.
Resumo:
The objective of this thesis was to identify the effects of different factors on the tension and tension relaxation of wet paper web after high-speed straining. The study was motivated by the plausible connection between wet web mechanical properties and wet web runnability on paper machines shown by previous studies. The mechanical properties of wet paper were examined using a fast tensile test rig with a strain rate of 1000%/s. Most of the tests were carried out with laboratory handsheets, but samples from a pilot paper machine were also used. The tension relaxation of paper was evaluated as the tension remaining after 0.475 s of relaxation (residual tension). The tensile and relaxation properties of wet webs were found to be strongly dependent on the quality and amount of fines. With low fines content, the tensile strength and residual tension of wet paper was mainly determined by the mechanical interactions between fibres at their contact points. As the fines strengthen the mechanical interaction in the network, the fibre properties also become important. Fibre deformations caused by the mechanical treatment of pulp were shown to reduce the mechanical properties of both dry and wet paper. However, the effect was significantly higher for wet paper. An increase of filler content from 10% to 25% greatly reduced the tensile strength of dry paper, but did not significantly impair wet web tensile strength or residual tension. Increased filler content in wet web was shown to increase the dryness of the wet web after the press section, which partly compensates for the reduction of fibrous material in the web. It is also presumable that fillers increase entanglement friction between fibres, which is beneficial for wet web strength. Different contaminants present in white water during sheet formation resulted in lowered surface tension and increased dryness after wet pressing. The addition of different contaminants reduced the tensile strength of the dry paper. The reduction of dry paper tensile strength could not be explained by the reduced surface tension, but rather on the tendency of different contaminants to interfere with the inter-fibre bonding. Additionally, wet web strength was not affected by the changes in the surface tension of white water or possible changes in the hydrophilicity of fibres caused by the addition of different contaminants. The spraying of different polymers on wet paper before wet pressing had a significant effect on both dry and wet web tensile strength, whereas wet web elastic modulus and residual tension were basically not affected. We suggest that the increase of dry and wet paper strength could be affected by the molecular level interactions between these chemicals and fibres. The most significant increases in dry and wet paper strength were achieved with a dual application of anionic and cationic polymers. Furthermore, selectively adding papermaking chemicals to different fibre fractions (as opposed to adding chemicals to the whole pulp) improved the wet web mechanical properties and the drainage of the pulp suspension.
Resumo:
Thermal stability and thermal decomposition of succinic acid, sodium succinate and its compounds with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA) in nitrogen and carbon dioxide atmospheres and TG-FTIR in nitrogen atmosphere. On heating, in both atmospheres the succinic acid melt and evaporate, while for the sodium succinate the thermal decomposition occurs with the formation of sodium carbonate. For the transition metal succinates the final residue up to 1180 ºC in N2 atmosphere was a mixture of metal and metal oxide in no simple stoichiometric relation, except for Zn compound, where the residue was a small quantity of carbonaceous residue. For the CO2 atmosphere the final residue up to 980 ºC was: MnO, Fe3O4, CoO, ZnO and mixtures of Ni, NiO and Cu, Cu2O.
Resumo:
Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor’s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque reference. This method is however parameter sensitive and requires a safety margin between the theoretical torque maximum and the actual torque limit. The DTC modulation principle allows however a direct load angle adjustment without any current control. In this work a direct load angle control method has been developed. The method keeps the drive stabile and allows the maximal utilisation of the drive without a safety margin in the torque limitation.
Resumo:
Cellen har ett s.k. cytoskelett som bl.a. ger stadga åt cellen och deltar i dess form- och rörelsefunktioner. Intermediärfilamenten är en viktig del av cytoskelettet och de har länge varit kända för sina väsentliga roller i att upprätthålla den cellulära organisationen och vävnadernas integritet. På senare år har man insett att intermediärfilamenten har en större funktionell mångsidighet än man tidigare tänkts sig, i och med att en rad olika studier har visat betydelsen av intermediärfilamenten vid olika signaleringprocesser. Dessa proteinnätverk samverkar nämligen med kinaser och andra viktiga signalfaktorer och deltar därmed i cellens signaleringmaskineri. Intermediärfilamentproteinet nestin används ofta som en markör för stamceller men dess fysiologiska funktioner är i stort sett okända. Interaktion mellan nestin och ett signalkomplex bestående av cyklin-beroende kinas 5 (eng. Cyclin-dependent kinase, Cdk5) och dess aktivatorprotein p35 upptäcktes i vårt laboratorium före denna avhandling påbörjades. Därför var syftet med min avhandling att undersöka den funktionella betydelsen av nestin i regleringen av Cdk5/p35 komplexet. Cdk5 är ett multifunktionellt kinas som reglerar både utvecklingen och stressreaktioner i nerver och muskler. Vi visade att nestin skyddar neuronala stamceller under oxidativ stress genom dess förmåga att hämma Cdk5s skadliga aktivitet. Genom att förankra Cdk5/p35 komplexet, reglerar nestin den subcellulära lokaliseringen av Cdk5/p35 och minskar klyvningen av p35 till den mer stabila aktivatorn p25. Vi demonstrerade också aktiveringsmekanismen för Cdk5 under differentiering av muskelceller. Proteinkinas C zeta (PKCzeta) avslöjades ha en förmåga att accelera klyvningen av p35 till p25, och därmed öka aktiviteten hos Cdk5. Nestin kunde genom sin förmåga att reglera Cdk5 signalkomplexet styra muskelcellernas differentiering. Denna doktorsavhandling har på ett avgörande vis ökat förståelsen av de reglerande mekanismer som styr Cdk5 aktivering. Avhandling presenterar nestin och PKCzeta som kritiska faktorer i denna reglering. Vidare innehåller avhandlingen ny information om de cellulära funktionerna hos nestin som vi har visat vara en viktig reglerare av cellernas överlevnad och differentiering.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
The aim of the study was to create and evaluate an intervention programme for Tanzanian children from a low-income area who are at risk of reading and writing difficulties. The learning difficulties, including reading and writing difficulties, are likely to be behind many of the common school problems in Tanzania, but they are not well understood, and research is needed. The design of the study included an identification and intervention phase with follow-up. A group based dynamic assessment approach was used in identifying children at risk of difficulties in reading and writing. The same approach was used in the intervention. The study was a randomized experiment with one experimental and two control groups. For the experimental and the control groups, a total of 96 (46 girls and 50 boys) children from grade one were screened out of 301 children from two schools in a low income urban area of Dar-es-Salaam. One third of the children, the experimental group, participated in an intensive training programme in literacy skills for five weeks, six hours per week, aimed at promoting reading and writing ability, while the children in the control groups had a mathematics and art programme. Follow-up was performed five months after the intervention. The intervention programme and the tests were based on the Zambian BASAT (Basic Skill Assessment Tool, Ketonen & Mulenga, 2003), but the content was drawn from the Kiswahili school curriculum in Tanzania. The main components of the training and testing programme were the same, only differing in content. The training process was different from traditional training in Tanzanian schools in that principles of teaching and training in dynamic assessment were followed. Feedback was the cornerstone of the training and the focus was on supporting the children in exploring knowledge and strategies in performing the tasks. The experimental group improved significantly more (p = .000) than the control groups during the intervention from pre-test to follow-up (repeated measures ANOVA). No differences between the control groups were noticed. The effect was significant on all the measures: phonological awareness, reading skills, writing skills and overall literacy skills. A transfer effect on school marks in Kiswahili and English was found. Following a discussion of the results, suggestions for further research and adaptation of the programme are presented.