977 resultados para Efficient Solutions
Resumo:
Web services are now a key ingredient of software services offered by software enterprises. Many standardized web services are now available as commodity offerings from web service providers. An important problem for a web service requester is the web service composition problem which involves selecting the right mix of web service offerings to execute an end-to-end business process. Web service offerings are now available in bundled form as composite web services and more recently, volume discounts are also on offer, based on the number of executions of web services requested. In this paper, we develop efficient algorithms for the web service composition problem in the presence of composite web service offerings and volume discounts. We model this problem as a combinatorial auction with volume discounts. We first develop efficient polynomial time algorithms when the end-to-end service involves a linear workflow of web services. Next we develop efficient polynomial time algorithms when the end-to-end service involves a tree workflow of web services.
Resumo:
Bluetooth is a short-range radio technology operating in the unlicensed industrial-scientific-medical (ISM) band at 2.45 GHz. A scatternet is established by linking several piconets together in ad hoc fashion to yield a global wireless ad hoc network. This paper proposes a polling policy that aims to achieve increased system throughput and reduced packet delays while providing reasonably good fairness among all traffic flows in a Bluetooth Scatternet. Experimental results from our proposed algorithm show performance improvements over a well known existing algorithm.
Resumo:
The optical rotatory features of the beta-structure of the polypeptides in non-aqueous solutions and films cast from these solutions have been investigated. The beta-structure of poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-O-carbo-bands of their films. The optical rotatory dispersion (ORD) and circular dichroism (CD) spectra of these polypeptides are found to be very similar in both film and solution. In solvents promoting the beta-structure, the polypeptides are characterized by CD troughs in the n-pi* transition region of the peptide chromophore. The ORD spectra are found to be positive in sign throughout the visible and accessible ultraviolet regions and are interpreted in terms of the possible existence of a relatively much larger positive pi-pi* CD bands as compared with the negative n-pi* band. The rotatory data obtained in the non-aqueous solution are compared with those obtained for other poly peptides in aqueous solutions, with respect to the type and extent of beta-structure present.
Resumo:
The specific side-chain orientations of the phenyl group in the polypeptides poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-O-carbobenzoxy-L-serine in the beta-structure have been studied by spectral measurements in solutions. All the three polypeptides exhibit aromatic CD bands, indicating the asymmetric placement of the side-chain phenyl rings when the polypeptide backbone takes up the antiparallel beta-structure. Supporting evidence for this is derived from n.m.r. spectra of the polypeptides, which show upfield shift of the phenyl protons due to the stacking of the aromatic rings. Molecular model building studies reveal the stacking of alternate phenyl groups along the polypeptide chain.
Resumo:
For a homing interceptor, suitable initial condition must be achieved by mid course guidance scheme for its maximum effectiveness. To achieve desired end goal of any mid course guidance scheme, two point boundary value problem must be solved online with all realistic constrain. A Newly developed computationally efficient technique named as MPSP (Model Predictive Static Programming) is utilized in this paper for obtaining suboptimal solution of optimal mid course guidance. Time to go uncertainty is avoided in this formulation by making use of desired position where midcourse guidance terminate and terminal guidance takes over. A suitable approach angle towards desired point also can be specified in this guidance law formulation. This feature makes this law particularly attractive because warhead effectiveness issue can be indirectly solved in mid course phase.
Resumo:
This paper describes the design of a power efficient microarchitecture for transient fault detection in chip multiprocessors (CMPs) We introduce a new per-core dynamic voltage and frequency scaling (DVFS) algorithm for our architecture that significantly reduces power dissipation for redundant execution with a minimal performance overhead. Using cycle accurate simulation combined with a simple first order power model, we estimate that our architecture reduces dynamic power dissipation in the redundant core by an mean value of 79% and a maximum of 85% with an associated mean performance overhead of only 1:2%
Resumo:
In Universal Mobile Telecommunication Systems (UMTS), the Downlink Shared Channel (DSCH) can be used for providing streaming services. The traffic model for streaming services is different from the commonly used continuously- backlogged model. Each connection specifies a required service rate over an interval of time, k, called the "control horizon". In this paper, our objective is to determine how k DSCH frames should be shared among a set of I connections. We need a scheduler that is efficient and fair and introduce the notion of discrepancy to balance the conflicting requirements of aggregate throughput and fairness. Our motive is to schedule the mobiles in such a way that the schedule minimizes the discrepancy over the k frames. We propose an optimal and computationally efficient algorithm, called STEM+. The proof of the optimality of STEM+, when applied to the UMTS rate sets is the major contribution of this paper. We also show that STEM+ performs better in terms of both fairness and aggregate throughput compared to other scheduling algorithms. Thus, STEM+ achieves both fairness and efficiency and is therefore an appealing algorithm for scheduling streaming connections.
Resumo:
This paper addresses the problem of secure path key establishment in wireless sensor networks that uses the random key pre-distribution technique. Inspired by the recent proxy-based scheme in the work of Ling and Znati (2005) and Li et al. (2005), we introduce a friend-based scheme for establishing pairwise keys securely. We show that the chances of finding friends in a neighbourhood are considerably more than that of finding proxies, leading to lower communication overhead. Further, we prove that the friend-based scheme performs better than the proxy-based scheme both in terms of resilience against node capture as well as in energy consumption for pairwise key establishment, making our scheme more feasible.
Resumo:
Wireless networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem – the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node.In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels,where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information(CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a corresponding factored class of control policies corresponding to local cooperation between nodes with a local outage constraint. The resulting optimal scheme in this class can again be computed efficiently in a decentralized manner. We demonstrate significant energy savings for both slow and fast fading channels through numerical simulations of randomly distributed networks.
Resumo:
A new class of fluorinated gelators derived from bile acids is reported. Perfluoroalkyl chains were attached to the bile acids through two different ester linkages and were synthesized following simple transformations. The gelation property of these derivatives is a function of the bile acid moiety, the spacer and the fluoroalkyl chain length. By varying these parameters, gels were obtained in aromatic hydrocarbons, DMSO and DMSO/DMF-H(2)O mixtures of different proportions. Several derivatives of deoxycholic and lithocholic acids were found to be efficient organogelators, while the reported bile-acid based organogelators are mostly derived from the cholic acid moiety. The efficient gelators among these compounds formed gels well below 1.0% (w/v) and hence they can be termed as supergelators. The mechanical properties of these gels could be modulated by changing either the bile acid moiety or by varying the length of the fluoroalkyl segment. The presence of CO(2)-philic perfluoroalkyl groups is also expected to enhance their solubility in supercritical CO(2) and hence these compounds are promising candidates for making aerogels.
Resumo:
Given an undirected unweighted graph G = (V, E) and an integer k ≥ 1, we consider the problem of computing the edge connectivities of all those (s, t) vertex pairs, whose edge connectivity is at most k. We present an algorithm with expected running time Õ(m + nk3) for this problem, where |V| = n and |E| = m. Our output is a weighted tree T whose nodes are the sets V1, V2,..., V l of a partition of V, with the property that the edge connectivity in G between any two vertices s ε Vi and t ε Vj, for i ≠ j, is equal to the weight of the lightest edge on the path between Vi and Vj in T. Also, two vertices s and t belong to the same Vi for any i if and only if they have an edge connectivity greater than k. Currently, the best algorithm for this problem needs to compute all-pairs min-cuts in an O(nk) edge graph; this takes Õ(m + n5/2kmin{k1/2, n1/6}) time. Our algorithm is much faster for small values of k; in fact, it is faster whenever k is o(n5/6). Our algorithm yields the useful corollary that in Õ(m + nc3) time, where c is the size of the global min-cut, we can compute the edge connectivities of all those pairs of vertices whose edge connectivity is at most αc for some constant α. We also present an Õ(m + n) Monte Carlo algorithm for the approximate version of this problem. This algorithm is applicable to weighted graphs as well. Our algorithm, with some modifications, also solves another problem called the minimum T-cut problem. Given T ⊆ V of even cardinality, we present an Õ(m + nk3) algorithm to compute a minimum cut that splits T into two odd cardinality components, where k is the size of this cut.
Resumo:
Allgather is an important MPI collective communication. Most of the algorithms for allgather have been designed for homogeneous and tightly coupled systems. The existing algorithms for allgather on Gridsystems do not efficiently utilize the bandwidths available on slow wide-area links of the grid. In this paper, we present an algorithm for allgather on grids that efficiently utilizes wide-area bandwidths and is also wide-area optimal. Our algorithm is also adaptive to gridload dynamics since it considers transient network characteristics for dividing the nodes into clusters. Our experiments on a real-grid setup consisting of 3 sites show that our algorithm gives an average performance improvement of 52% over existing strategies.
Resumo:
Closed form solutions for equilibrium and flexibility matrices of the Mindlin-Reissner theory based eight-node rectangular plate bending element (MRP8) using integrated Force Method (IFM) are presented in this paper. Though these closed form solutions of equilibrium and flexibility matrices are applicable to plate bending problems with square/rectangular boundaries, they reduce the computational time significantly and give more exact solutions. Presented closed form solutions are validated by solving large number of standard square/rectangular plate bending benchmark problems for deflections and moments and the results are compared with those of similar displacement-based eight-node quadrilateral plate bending elements available in the literature. The results are also compared with the exact solutions.
Resumo:
A new class of fluorinated gelators derived from bile acids is reported. Perfluoroalkyl chains were attached to the bile acids through two different ester linkages and were synthesized following simple transformations. The gelation property of these derivatives is a function of the bile acid moiety, the spacer and the fluoroalkyl chain length. By varying these parameters, gels were obtained in aromatic hydrocarbons, DMSO and DMSO/DMF-H(2)O mixtures of different proportions. Several derivatives of deoxycholic and lithocholic acids were found to be efficient organogelators, while the reported bile-acid based organogelators are mostly derived from the cholic acid moiety. The efficient gelators among these compounds formed gels well below 1.0% (w/v) and hence they can be termed as supergelators. The mechanical properties of these gels could be modulated by changing either the bile acid moiety or by varying the length of the fluoroalkyl segment. The presence of CO(2)-philic perfluoroalkyl groups is also expected to enhance their solubility in supercritical CO(2) and hence these compounds are promising candidates for making aerogels.