921 resultados para Effective alveolar ventilation
Resumo:
This paper investigates urban canopy layers (UCL) ventilation under neutral atmospheric condition with the same building area density (λp=0.25) and frontal area density (λf=0.25) but various urban sizes, building height variations, overall urban forms and wind directions. Turbulent airflows are first predicted by CFD simulations with standard k-ε model evaluated by wind tunnel data. Then air change rates per hour (ACH) and canopy purging flow rate (PFR) are numerically analyzed to quantify the rate of air exchange and the net ventilation capacity induced by mean flows and turbulence. With a parallel approaching wind (θ=0o), the velocity ratio first decreases in the adjustment region, followed by the fully-developed region where the flow reaches a balance. Although the flow quantities macroscopically keep constant, however ACH decreases and overall UCL ventilation becomes worse if urban size rises from 390m to 5km. Theoretically if urban size is infinite, ACH may reach a minimum value depending on local roof ventilation, and it rises from 1.7 to 7.5 if the standard deviation of building height variations increases (0% to 83.3%). Overall UCL ventilation capacity (PFR) with a square overall urban form (Lx=Ly=390m) is better as θ=0o than oblique winds (θ=15o, 30o, 45o), and it exceeds that of a staggered urban form under all wind directions (θ=0o to 45o), but is less than that of a rectangular urban form (Lx=570m, Ly=270m) under most wind directions (θ=30o to 90o). Further investigations are still required to quantify the net ventilation efficiency induced by mean flows and turbulence.
Resumo:
Rapid rates of urbanization have resulted into increased concerns of urban environment. Amongst them, wind and thermal comfort levels for pedestrians have attracted research interest. In this regards, urban wind environment is seen as a crucial components that can lead to improved thermal comfort levels for pedestrian population. High rise building in modern urban setting causes high levels of turbulence that renders discomfort to pedestrians. Additionally, a higher frequency of high ris e buildings at a particular region acts as a shield against the wind flow to the lower buildings beyond them resulting into higher levels of discomfort to users or residents. Studies conducted on developing wind flow models using Computational Fluid Dynami cs (CFD) simulations have revealed improvement in interval to height ratios can results into improved wind flow within the simulation grid. However, high value and demand for land in urban areas renders expansion to be an impractical solution. Nonetheless, innovative utilization of architectural concepts can be imagined to improve the pedestrian comfort levels through improved wind permeability. This paper assesses the possibility of through-building gaps being a solution to improve pedestrian comfort levels.
Resumo:
The objective of this article is to review the scientific literature on airflow distribution systems and ventilation effectiveness to identify and assess the most suitable room air distribution methods for various spaces. In this study, different ventilation systems are classified according to specific requirements and assessment procedures. This study shows that eight ventilation methods have been employed in the built environment for different purposes and tasks. The investigation shows that numerous studies have been carried out on ventilation effectiveness but few studies have been done regarding other aspects of air distribution. Amongst existing types of ventilation systems, the performance of each ventilation methods varies from one case to another due to different usages of the ventilation system in a room and the different assessment indices used. This review shows that the assessment of ventilation effectiveness or efficiency should be determined according to each task of the ventilation system, such as removal of heat, removal of pollutant, supply fresh air to the breathing zone or protecting the occupant from cross infection. The analysis results form a basic framework regarding the application of airflow distribution for the benefit of designers, architects, engineers, installers and building owners.
Resumo:
25 years ago when the Durham conferences were in full swing, I presented results of investigations on language and behaviour in autism. I tentatively proposed that early language in autism might tell us about the cognitive skills of people with ASD and the behaviour might lead to greater understanding of which brain systems might be affected. In this presentation, I will update these topics and present a summary of other work I have been involved with in attempting to improve the lives of people with autism and their families. Data on three people with autism at the early stages of speech development showed an unusual pattern of learning colour and number names early. One possibility was that this skill represented a sign of weak central coherence – they only attended to one dimension. Colleagues of mine were equally puzzled so we tried to find out if my results could be replicated – they were not (see Schafer, Williams & Smith, 2014). Instead we found this pattern was also seen in Down Syndrome, but that early vocabulary in autism was associated with low Colorado Meaningfulness at least in comprehension. The Colorado Meaningfulness of a word is a measure of how many words can be associated with it and often involve extensive use of context. Our data suggest that the number of contexts in which a particular word can appear has a role in determining vocabulary in ASD which is consistent with the weak central coherence theory of autism. In the course of this work I also came across a group of young people with autism who appeared to have a written vocabulary but not a spoken one. It seems possible that print might be a medium of communication when speech is not. Repetitive behaviour in autism remains a mystery. We can use functional analysis to determine why the behaviour occurs, but a worryingly large percentage of behaviours are described as being internally driven or sensory reinforced. What does that mean in terms of brain activity – could it be system analogous to epilepsy, where brain activity becomes inappropriately synchronised? At the moment I cannot claim to have solved this problem, but if sensation is a driver then sensory interventions should make a difference. Data from a recent study will be presented to suggest that for some individuals this is the case. Social behaviour remains the key however, and it remains to be seen whether it is possible for social behaviour to be aided. One route that has potential is direct teaching of skills through drama and working with others who do not have social difficulties of the same type. The picture is complicated by changes in social skills with age and experience, but the failure of people with ASD to interact when in settings of social contact is little researched.
Resumo:
It has been shown that CyMe4-BTPhen-functionalized silica-coated maghemite (c-Fe2O3) magnetic nanoparticles (MNPs) are capable of quantitative separation of Am(III) from Eu(III) from HNO3 solutions. These MNPs also show a small but significant selectivity for Am(III) over Cm(III) with a separation factor of around 2 in 4 M HNO3. The water molecule in the cavity of the BTPhen may also play an important part in the selectivity.
Resumo:
A great number of studies on wind conditions in passages between slab-type buildings have been conducted in the past. However, wind conditions under different structure and configuration of buildings is still unclear and studies existed still can’t provide guidance on urban planning and design, due to the complexity of buildings and aerodynamics. The aim of this paper is to provide more insight in the mechanism of wind conditions in passages. In this paper, a simplified passage model with non-parallel buildings is developed on the basis of the wind tunnel experiments conducted by Blocken et al. (2008). Numerical simulation based on CFD is employed for a detailed investigation of the wind environment in passages between two long narrow buildings with different directions and model validation is performed by comparing numerical results with corresponding wind tunnel measurements.
Resumo:
A series of hydro- and organo-supergelators have been synthesised via coupling of simple bis aromaticureas via alkyl amide linkages. These bis amide-aromatic-ureas exhibited reduced critical gelator concentrations, improved gelator stability, mechanical and dye removal properties for potential use in water purification, in comparison to related bis aromatic-ureas. Systematic structure studies via variation of the bis amide-aromatic-urea linker length as well as functionalization of the terminal aromatic moieties have enabled control over the gel properties.
Resumo:
A series of hydro- and organo-supergelators have been synthesised via coupling of simple bis aromaticureas via alkyl amide linkages. These bis amide-aromatic-ureas exhibited reduced critical gelator concentrations, improved gelator stability, mechanical and dye removal properties for potential use in water purification, in comparison to related bis aromatic-ureas. Systematic structure studies via variation of the bis amide-aromatic-urea linker length as well as functionalization of the terminal aromatic moieties have enabled control over the gel properties.
Resumo:
It has been shown that CyMe4-BTPhen-functionalized silica-coated maghemite (c-Fe2O3) magnetic nanoparticles (MNPs) are capable of quantitative separation of Am(III) from Eu(III) from HNO3 solutions. These MNPs also show a small but significant selectivity for Am(III) over Cm(III) with a separation factor of around 2 in 4 M HNO3. The water molecule in the cavity of the BTPhen may also play an important part in the selectivity.
Resumo:
It has been shown that modification of the phenanthroline backbone of CyMe4-BTPhen leads to subtle electronic modulation, permitting differential ligation of Am(III) and Cm(III) resulting in separation factors up to 7.
Resumo:
A virtual system that emulates an ARM-based processor machine has been created to replace a traditional hardware-based system for teaching assembly language. The proposed virtual system integrates, in a single environment, all the development tools necessary to deliver introductory or advanced courses on modern assembly language programming. The virtual system runs a Linux operating system in either a graphical or console mode on a Windows or Linux host machine. No software licenses or extra hardware are required to use the virtual system, thus students are free to carry their own ARM emulator with them on a USB memory stick. Institutions adopting this, or a similar virtual system, can also benefit by reducing capital investment in hardware-based development kits and enable distance learning courses.
Resumo:
Landscape scale habitat restoration has the potential to reconnect habitats in fragmented landscapes. This study investigates landscape connectivity as a key to effective habitat restoration in lowland agricultural landscapes and applies these findings to transferable management recommendations. The study area is the Stonehenge World Heritage Site, UK, where landscape scale chalk grassland restoration has been implemented. Here, the ecological benefits of landscape restoration and the species, habitat and landscape characteristics that facilitate or impede the enhancement of biodiversity and landscape connectivity were investigated. Lepidoptera were used as indictors of restoration success and results showed restoration grasslands approaching the ecological conditions of the target chalk grassland habitat and increasing in biodiversity values within a decade. Restoration success is apparent for four species with a broad range of grass larval host plants (e.g. Melanargia galathea, Maniola jurtina) or with intermediate mobility (Polyommatus icarus). However, two species with specialist larval host plants and low mobility (Lysandra bellargus), are restricted to chalk grassland fragments. Studies of restoration grassland of different ages show that recent grassland restoration (1 or 2 years old) may reduce the functional isolation of chalk grassland fragments. A management experiment showed that mowing increases boundary following behaviour in two species of grassland Lepidoptera; Maniola jurtina and Zygaena filipendulae. Analysis of the landscape scale implications of the grassland restoration illustrates an increase in grassland habitat network size and in landscape connectivity, which is likely to benefit the majority of grassland associated Lepidoptera. Landscape and habitat variables can be managed to increase the success of restoration projects including the spatial targeting of receptor sites, vegetation structure and selection of seed source and management recommendations are provided that are transferrable to other species-rich grassland landscape scale restoration projects. Overall results show restoration success for some habitats and species within a decade. However, additional management is required to assist the re-colonisation of specialist species. Despite this, habitat restoration at the landscape scale can be an effective, long term approach to enhance butterfly biodiversity and landscape connectivity.