998 resultados para EXAFS spectroscopy
Resumo:
The molecular spectroscopy (including near infrared diffuse reflection spectroscopy, Raman spectroscopy and infrared spectroscopy) with OPUS/Ident software was applied to clustering ginsengs according to species and processing methods. The results demonstrate that molecular spectroscopic analysis could provide a rapid, nondestructive and reliable method for identification of Chinese traditional medicine. It's found that the result of Raman spectroscopic analysis was the best one among these three methods. Comparing with traditional methods, which are laborious and time consuming, the molecular spectroscopic analysis is more effective.
Resumo:
The present study reports an application of the searching combination moving window partial least squares (SCMWPLS) algorithm to the determination of ethenzamide and acetoaminophen in quaternary powdered samples by near infrared (NIR) spectroscopy. Another purpose of the study was to examine the instrumentation effects of spectral resolution and signal-to-noise ratio of the Buchi NIRLab N-200 FT-NIR spectrometer equipped with an InGaAs detector. The informative spectral intervals of NIR spectra of a series of quaternary powdered mixture samples were first located for ethenzamide and acetoaminophen by use of moving window partial least squares regression (MWPLSR). Then, these located spectral intervals were further optimised by SCMWPLS for subsequent partial least squares (PLS) model development. The improved results are attributed to both the less complex PLS models and to higher accuracy of predicted concentrations of ethenzamide and acetoaminophen in the optimised informative spectral intervals that are featured by NIR bands. At the same time, SCMWPLS is also demonstrated as a viable route for wavelength selection.
Resumo:
Three bidentate ligands, 4-phenyl-2-(2-pyridyl)-quinoline (ppq), 6-(carbazol-9-yl)-4-phenyl-2-(2-pyridyl)-quinoline (cpq) and 6-diphenylamino-4-phenyl-2-(2-pyridyl)-quinoline (dpq) and their zinc(II) complexes, have been designed and synthesized. The crystal structure of [Zn(ppq)(2)Cl]PF6 shows that the central zinc atom is coordinated with one chloride and four nitrogen atoms from two ligands. The introduction of an electron-donating substituent such as carbazole or an aromatic amine group at the 6-position of the quinoline moiety can generate colored tunable Zn complexes, and the photoluminescence (PL) wavelength was modulated from 418 nm for [Zn(ppq)(2)Cl]PF6 to 591 nm for [Zn(cpq)(2)Cl]PF6 and 638 nm for [Zn(dpq)(2)Cl]PF6 in CH2Cl2 solution. The electroluminescence spectrum of [Zn(dpq)(2)Cl]PF6 exhibits pure red light emission with the Commission Internationale de L'Eclairage (CIE) coordinates (0.63, 0.36) and a maximum at 648 nm.
Resumo:
Nanocrystals and powders of KMgF3 doped with Eu2+ were synthesized by the microemulsion method and the solvothermal process, respectively. The emission and excitation spectra of KMgF3:Eu2+ phosphors were measured and compared with those of the samples synthesized through a solid. state reaction, Bridgman-Stockbarger method, and mild hydrothermal technique. The KMgF3: Eu2+ samples synthesized by means of the microemulsion method and the solvothermal process show only a sharp emission peak located at 360 nm, in the emission spectra, which arises from the f -> f(P-6(1/2)-> S-8(1/2)) transition of Eu2+. The broad emission bands appear at 420 nm,,which arises from Eu2+ <- O2- cannot be observed(in the mild hydrothermal and single crystal samples, the emission peak at 420 nm besides the emission of Eu2+ at 360 nm is observed). In the excitation spectrum of the KMgF3: Eu2+ samples synthesized by the microemulsion method and the solvothermal process, the excitation peaks show an intensive blue shift. The blue shift can he attributed to the lower oxygenic content in the KMgF3: Eu2+ samples synthesized by the microemulsion method and the solvothermal process.
Resumo:
The growth kinetics of self-assembled monolayers formed by exposing freshly cleaved mica to octanol solution has been studied by atomic force microscopy (AFM) and Fourier-transform infrared spectroscopy (FTIR). AFM images of samples immersed in octanol for varying exposure times showed that before forming a complete monolayer the octanol molecules aggregated in the form of small islands on the mica surface. With the proceeding of immersion, these islands gradually grew and merged into larger patches. Finally, a close-packed film with uniform appearance and few defects was formed. The thickness of the final film showed 0.8 nm in height, which corresponded to the 40degrees tilt molecular conformation of the octanol monolayer. The growth mechanisms consisted of nucleation, growth, and coalescence of the submonolayer films. The growth process was also confirmed by FTIR. And the surface coverage of the submonolayer islands estimated from AFM images and FTIR spectra as a function of immersion time was quite consistent.
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.
Resumo:
Silver underpotential deposition (UPD)-induced surface atomic rearrangement of polycrystalline gold nanofilms was probed with use of surface plasmon resonance spectroscopy (SPRs) as a novel probe tool in combination with cyclic voltammetry. Interestingly, upon repetitive electrochemical UPD and stripping of Ag, the surface structure of the resulting bare Au film is rearranged due to strong adatom-substrate interactions, which causes a large angle shift of SPR R-theta curves, in a good linear relationship with the number of UPDs, to a lower SPR angle. The n, K values of the surfacial Au monolayers before and after the repetitive Ag UPD and stripping for 27 times are found to be 0.133, 3.60 and 0.565, 9.39, respectively, corresponding to the huge shift of 1.61degrees to the left of the SPR minima. Cyclic voltammetry experiments in 0.10 M H2SO4 are carried out before and after the UPD treatment to examine the quality of the whole electrode surface and confirmed this change. To correlate the angle change in SPRs with the profile change in the cyclic voltammogram, the UPD treatment was also performed on a Au(111) textured thin film. It was therefore confirmed that the resonance position of the SPR spectrum is very sensitive to the surface crystallographic orientation of the bare Au substrates. Some surface atomic rearrangement can cause a pronounced SPR angle shift.
Resumo:
Barium hexaferrite was synthesized by chemical co-precipitation. Its Mossbauer spectra were obtained. A semi-empirical model, based on the Phillips theory of bonding, has been developed for quantitative explanation of the Mossbauer isomer shifts of Fe ions in BaFe12O19 crystals. The results show that, using the relationship between isomer shifts and covalency, the site assignments in hexaferrites will be resolved easily. This paper provides a powerful tool for studying other members of the hexagonal ferrimagnetic oxides family.
Resumo:
The complex fluoride LiBaF3 and LiBaF3:M(M = Eu, Ce) is solvothermally synthesized at 180 degreesC and characterized by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy. In the solvothermal process, the solvents, molar ratios of initial mixtures and reaction temperature play important roles in the formation of products. The excitation and emission spectra of the LiBaF3:M(M= Eu,Ce) have been measured by fluorescence spectrophotometer. In the LiBaF3: Eu emission spectra, there is one sharp line emission located at 360 nm arising from f --> f transition of Eu2+ in the host lattice, and typical doublet 5d-4f emission of Ce3+ in LiBaF3 powder is shown.
Resumo:
Thiol-terminated oligonucleotide was immobilized to gold surface by self-assembly method. A novel amplification strategy was introduced for improving the sensitivity of DNA. hybridization using biotin labeled protein-streptavidin network complex. This complex can be formed in a cross-linking network of molecules so that the amplification of the response signal will be realized due to the big molecular size of the complex. It could be proved from the impedance technique that this amplification strategy caused dramatic improvement of the detection sensitivity. These results give significant advances in the generality and sensitivity as it is applied to biosensing.
Resumo:
The conformation of microperoxidase-11 (MP-11) adsorbed on roughened silver electrodes was studied using surface-enhanced Fourier transform Raman spectroscopy. The results demonstrate that MP-11 was initially adsorbed via its polypeptide chain with a alpha-helix conformation, as indicated by the enhancement of the characteristic bands related to the amides I and III. The weak resonance effect of the porphyrin macrocycle in the near IR region contributes to the spectrum of the heme group. The presence of imidazole as the sixth ligand to the heme iron influences the conformation of the polypeptide chain of MP-11 on the electrode surface. Evaporation of solvent water results in an opened conformation of the adsorbed MP-11. which allows the heme group to contact the electrode surface directly.
Resumo:
Amphotericin B (AmB) is a popular drug frequently applied in the treatment of systemic fungal infections. In the presence of ruthenium (II) as the maker ion, the behavior of AmB to form ion channels in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes were studied by cyclic votammetry, AC impedance spectroscopy, and UV/visible absorbance spectroscopy. Different concentrations of AmB ranging from a molecularly dispersed to a highly aggregated state of the drug were investigated. In a fixed cholesterol or ergosterol content (5 mol %) in glassy carbon electrode-supported model membranes, our results showed that no matter what form of AmB, monomeric or aggregated, AmB could form ion channels in supported ergosterol-containing phosphatidylcholine bilayer model membranes. However, AmB could not form ion channels in its monomeric form in sterol-free and cholesterol-containing supported model membranes. On the one hand, when AmB is present as an aggregated state, it can form ion channels in cholesterol-containing supported model membranes; on the other hand, only when AmB is present as a relatively highly aggregated state can it form ion channels in sterol-free supported phosphatidylcholine bilayer model membranes. The results showed that the state of AmB played an important role in forming ion channels in sterol-free and cholesterol-containing supported phosphatidylcholine bilayer model membranes.
Resumo:
By using the average band-gap model, the chemical bond properties of (La1-x, M-x)(2)CuO4(M=Ba, Sr) were calculated. The calculated covalencies for Cu-O and La-O bond in the compounds are 0.3 and 0.03 respectively. Mossbauer isomer shifts of Fe-57 doped in La2CuO4 and Sn-119 doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in Fe-57 and Sn-119 doped La2CuO4.
Resumo:
Polymeric electrolytes of (PEO1)(10) LiClO4-Al2O3 (PEO: poly (ethyleneoxide)) and (PEO2)(16)LiClO4-EC (EC: ethylene carbonate) were prepared. We proposed an equivalent circuit and gave the meaning of the concerned circuit elements. When the impedance spectrum deformed severely, the ionic conductivity of polymer electrolyte was determined by using the maximum of imaginary impedance, which is a convenient method.
Resumo:
The effect of rare-earth ion Eu3+ on hemoglobin (Hb) was studied by using two-dimensional Raman correlation spectroscopy. The results show that with the variation of Eu3+ concentrations as perturbation, the oxidation state of Hb and its spin state are both sensitive to the perturbation. Eu3+ added to Hb affects the oxidation and spin state synchronously. The four structure-sensitive bands of Hb are more accessible to the Eu3+ than other bands.