949 resultados para EX VIVO HIPPOCAMPUS IMAGING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcriptional silencing of genes transferred into hematopoietic stem cells poses one of the most significant challenges to the success of gene therapy. If the transferred gene is not completely silenced, a progressive decline in gene expression as the mice age often is encountered. These phenomena were observed to various degrees in mouse transplant experiments using retroviral vectors containing a human β-globin gene, even when cis-linked to locus control region derivatives. Here, we have investigated whether ex vivo preselection of retrovirally transduced stem cells on the basis of expression of the green fluorescent protein driven by the CpG island phosphoglycerate kinase promoter can ensure subsequent long-term expression of a cis-linked β-globin gene in the erythroid lineage of transplanted mice. We observed that 100% of mice (n = 7) engrafted with preselected cells concurrently expressed human β-globin and the green fluorescent protein in 20–95% of their RBC for up to 9.5 mo posttransplantation, the longest time point assessed. This expression pattern was successfully transferred to secondary transplant recipients. In the presence of β-locus control region hypersensitive site 2 alone, human β-globin mRNA expression levels ranged from 0.15% to 20% with human β-globin chains detected by HPLC. Neither the proportion of positive blood cells nor the average expression levels declined with time in transplanted recipients. Although suboptimal expression levels and heterocellular position effects persisted, in vivo stem cell gene silencing and age-dependent extinction of expression were avoided. These findings support the further investigation of this type of vector for the gene therapy of human hemoglobinopathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA vaccines that encode encephalitogenic sequences in tandem can protect from subsequent experimental autoimmune encephalomyelitis induced with the corresponding peptide. The mechanism for this protection and, in particular, if it is specific for the amino acid sequence encoding the vaccine are not known. We show here that a single amino acid exchange in position 79 from serine (nonself) to threonine (self) in myelin basic protein peptide MBP68–85, which is a major encephalitogenic determinant for Lewis rats, dramatically alters the protection. Moreover, vaccines encoding the encephalitogenic sequence MBP68–85 do not protect against the second encephalitogenic sequence MBP89–101 in Lewis rats and vice versa. Thus, protective immunity conferred by DNA vaccination exquisitely discriminates between peptide target autoantigens. No bystander suppression was observed. The exact underlying mechanisms remain elusive because no simple correlation between impact on ex vivo responses and protection against disease were noted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of gene therapy to human disease is currently restricted by the relatively low efficiency and potential hazards of methods of oligonucleotide or gene delivery. Antisense or transcription factor decoy oligonucleotides have been shown to be effective at altering gene expression in cell culture expreriments, but their in vivo application is limited by the efficiency of cellular delivery, the intracellular stability of the compounds, and their duration of activity. We report herein the development of a highly efficient method for naked oligodeoxynucleotide (ODN) transfection into cardiovascular tissues by using controlled, nondistending pressure without the use of viral vectors, lipid formulations, or exposure to other adjunctive, potentially hazardous substances. In this study, we have documented the ability of ex vivo, pressure-mediated transfection to achieve nuclear localization of fluorescent (FITC)-labeled ODN in approximately 90% and 50% of cells in intact human saphenous vein and rat myocardium, respectively. We have further documented that pressure-mediated delivery of antisense ODN can functionally inhibit target gene expression in both of these tissues in a sequence-specific manner at the mRNA and protein levels. This oligonucleotide transfection system may represent a safe means of achieving the intraoperative genetic engineering of failure-resistant human bypass grafts and may provide an avenue for the genetic manipultation of cardiac allograft rejection, allograft vasculopathy, or other transplant diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatic mosaicism has been observed previously in the lymphocyte population of patients with Fanconi anemia (FA). To identify the cellular origin of the genotypic reversion, we examined each lymphohematopoietic and stromal cell lineage in an FA patient with a 2815–2816ins19 mutation in FANCA and known lymphocyte somatic mosaicism. DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively. These data, together with the absence of the FANCA exon 29 mutation in Epstein–Barr virus-transformed B cells and its presence in fibroblasts, indicate that genotypic reversion, most likely because of back mutation, originated in a lymphohematopoietic stem cell and not solely in a lymphocyte population. Contrary to a predicted increase in marrow cellularity resulting from reversion in a hematopoietic stem cell, pancytopenia was progressive. Additional evaluations revealed a partial deletion of 11q in 3 of 20 bone marrow metaphase cells. By using interphase fluorescence in situ hybridization with an MLL gene probe mapped to band 11q23 to identify colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells with the 11q deletion, the abnormal clone was exclusive to colonies with the FANCA exon 29 mutation. Thus, we demonstrate the spontaneous genotypic reversion in a lymphohematopoietic stem cell. The subsequent development of a clonal cytogenetic abnormality in nonrevertant cells suggests that ex vivo correction of hematopoietic stem cells by gene transfer may not be sufficient for providing life-long stable hematopoiesis in patients with FA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD1 molecules are specialized in presenting lipids to T lymphocytes, but identification and isolation of CD1-restricted lipidspecific T cells has been hampered by the lack of reliable and sensitive techniques. We here report the construction of CD1d–glycolipid tetramers from fully denatured human CD1d molecules by using the technique of oxidative refolding chromatography. We demonstrate that chaperone- and foldase-assisted refolding of denatured CD1d molecules and β2-microglobulin in the presence of synthetic lipids is a rapid method for the generation of functional and specific CD1d tetramers, which unlike previously published protocols ensures isolation of CD1d tetramers loaded with a single lipid species. The use of human CD1d–α-galactosylceramide tetramers for ex vivo staining of peripheral blood lymphocytes and intrahepatic T cells from patients with viral liver cirrhosis allowed for the first time simultaneous analysis of frequency and specificity of natural killer T cells in human clinical samples. Application of this protocol to other members of the CD1 family will provide powerful tools to investigate lipid-specific T cell immune responses in health and in disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclooxygenase (COX) product, prostacyclin (PGI2), inhibits platelet activation and vascular smooth-muscle cell migration and proliferation. Biochemically selective inhibition of COX-2 reduces PGI2 biosynthesis substantially in humans. Because deletion of the PGI2 receptor accelerates atherogenesis in the fat-fed low density lipoprotein receptor knockout mouse, we wished to determine whether selective inhibition of COX-2 would accelerate atherogenesis in this model. To address this hypothesis, we used dosing with nimesulide, which inhibited COX-2 ex vivo, depressed urinary 2,3 dinor 6-keto PGF1α by approximately 60% but had no effect on thromboxane formation by platelets, which only express COX-1. By contrast, the isoform nonspecific inhibitor, indomethacin, suppressed platelet function and thromboxane formation ex vivo and in vivo, coincident with effects on PGI2 biosynthesis indistinguishable from nimesulide. Indomethacin reduced the extent of atherosclerosis by 55 ± 4%, whereas nimesulide failed to increase the rate of atherogenesis. Despite their divergent effects on atherogenesis, both drugs depressed two indices of systemic inflammation, soluble intracellular adhesion molecule-1, and monocyte chemoattractant protein-1 to a similar but incomplete degree. Neither drug altered serum lipids and the marked increase in vascular expression of COX-2 during atherogenesis. Accelerated progression of atherosclerosis is unlikely during chronic intake of specific COX-2 inhibitors. Furthermore, evidence that COX-1-derived prostanoids contribute to atherogenesis suggests that controlled evaluation of the effects of nonsteroidal anti-inflammatory drugs and/or aspirin on plaque progression in humans is timely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fabry disease is a lipid storage disorder resulting from mutations in the gene encoding the enzyme α-galactosidase A (α-gal A; EC 3.2.1.22). We previously have demonstrated long-term α-gal A enzyme correction and lipid reduction mediated by therapeutic ex vivo transduction and transplantation of hematopoietic cells in a mouse model of Fabry disease. We now report marked improvement in the efficiency of this gene-therapy approach. For this study we used a novel bicistronic retroviral vector that engineers expression of both the therapeutic α-gal A gene and the human IL-2Rα chain (huCD25) gene as a selectable marker. Coexpression of huCD25 allowed selective immunoenrichment (preselection) of a variety of transduced human and murine cells, resulting in enhanced intracellular and secreted α-gal A enzyme activities. Of particular significance for clinical applicability, mobilized CD34+ peripheral blood hematopoietic stem/progenitor cells from Fabry patients have low-background huCD25 expression and could be enriched effectively after ex vivo transduction, resulting in increased α-gal A activity. We evaluated effects of preselection in the mouse model of Fabry disease. Preselection of transduced Fabry mouse bone marrow cells elevated the level of multilineage gene-corrected hematopoietic cells in the circulation of transplanted animals and improved in vivo enzymatic activity levels in plasma and organs for more than 6 months after both primary and secondary transplantation. These studies demonstrate the potential of using a huCD25-based preselection strategy to enhance the clinical utility of ex vivo hematopoietic stem/progenitor cell gene therapy of Fabry disease and other disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin and role of IL-17, a T-cell derived cytokine, in cartilage and bone destruction during rheumatoid arthritis (RA) remain to be clarified. In human ex vivo models, addition of IL-17 enhanced IL-6 production and collagen destruction, and inhibited collagen synthesis by RA synovium explants. On mouse cartilage, IL-17 enhanced cartilage proteoglycan loss and inhibited its synthesis. On human RA bone explants, IL-17 also increased bone resorption and decreased formation. Addition of IL-1 in these conditions increased the effect of IL-17. Blocking of bone-derived endogenous IL-17 with specific inhibitors resulted in a protective inhibition of bone destruction. Conversely, intra-articular administration of IL-17 into a normal mouse joint induced cartilage degradation. In conclusion, the contribution of IL-17 derived from synovium and bone marrow T cells to joint destruction suggests the control of IL-17 for the treatment of RA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report concerns a clinical trial for rheumatoid arthritis (RA), approved by the US National Institutes of Health and the Food and Drug Administration. An amphotropic retrovirus (MFG-IRAP) was used ex vivo to transfer a cDNA encoding human interleukin-1 receptor antagonist (IL-1Ra) to synovium. The protocol required the transduced cells to secrete at least 30 ng IL-1Ra/106 cells per 48 h before reimplantation. Here we have evaluated various protocols for their efficiency in transducing cultures of human rheumatoid synoviocytes. The most reliably efficient methods used high titer retrovirus (approximately 108 infectious particles/ml). Transduction efficiency was increased further by exposing the cells to virus under flow-through conditions. The use of dioctadecylamidoglycylspermine (DOGS) as a polycation instead of Polybrene (hexadimethrine bromide) provided an additional small increment in efficiency. Under normal conditions of static transduction, standard titer, clinical grade retrovirus (approximately 5 × 105 infectious particles/ml) failed to achieve the expression levels required by the clinical trial. However, the shortfall could be remedied by increasing the time of transduction under static conditions, transducing under flow-through conditions, or transducing during centrifugation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosine is an inhibitor of neuronal activity in the brain. The local release of adenosine from grafted cells was evaluated as an ex vivo gene therapy approach to suppress synchronous discharges and epileptic seizures. Fibroblasts were engineered to release adenosine by inactivating the adenosine-metabolizing enzymes adenosine kinase and adenosine deaminase. After encapsulation into semipermeable polymers, the cells were grafted into the brain ventricles of electrically kindled rats, a model of partial epilepsy. Grafted rats provided a nearly complete protection from behavioral seizures and a near-complete suppression of afterdischarges in electroencephalogram recordings, whereas the full tonic–clonic convulsions in control rats remained unaltered. Thus, the local release of adenosine resulting in adenosine concentrations <25 nM at the site of action is sufficient to suppress seizure activity and, therefore, provides a potential therapeutic principle for the treatment of drug-resistant partial epilepsies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current gene therapy protocols for HIV infection use transfection or murine retrovirus mediated transfer of antiviral genes into CD4+ T cells or CD34+ progenitor cells ex vivo, followed by infusion of the gene altered cells into autologous or syngeneic/allogeneic recipients. While these studies are essential for safety and feasibility testing, several limitations remain: long-term reconstitution of the immune system is not effected for lack of access to the macrophage reservoir or the pluripotent stem cell population, which is usually quiescent, and ex vivo manipulation of the target cells will be too expensive and impractical for global application. In these regards, the lentivirus-specific biologic properties of the HIVs, which underlie their pathogenetic mechanisms, are also advantageous as vectors for gene therapy. The ability of HIV to specifically target CD4+ cells, as well as non-cycling cells, makes it a promising candidate for in vivo gene transfer vector on one hand, and for transduction of non-cycling stem cells on the other. Here we report the use of replication-defective vectors and stable vector packaging cell lines derived from both HIV-1 and HIV-2. Both HIV envelopes and vesicular stomatitis virus glycoprotein G were effective in mediating high-titer gene transfer, and an HIV-2 vector could be cross-packaged by HIV-1. Both HIV-1 and HIV-2 vectors were able to transduce primary human macrophages, a property not shared by murine retroviruses. Vesicular stomatitis virus glycoprotein G-pseudotyped HIV vectors have the potential to mediate gene transfer into non-cycling hematopoietic stem cells. If so, HIV or other lentivirus-based vectors will have applications beyond HIV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations of the Bruton's tyrosine kinase (btk) gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immune deficiency (Xid) in mice. To establish the BTK role in B-cell activation we examined the responses of wild-type and Xid B cells to stimulation through surface IgM and CD40, the transducers of thymus independent-type 2 and thymus-dependent activation, respectively. Wild-type BTK was necessary for proliferation induced by soluble anti-IgM (a prototype for thymus independent-type 2 antigen), but not for responses to soluble CD40 ligand (CD40L, the B-cell activating ligand expressed on T-helper cells). In the absence of wild-type BTK, B cells underwent apoptotic death after stimulation with anti-IgM. In the presence of wild-type but not mutated BTK, anti-IgM stimulation reduced apoptotic cell death. In contrast, CD40L increased viability of both wild-type and Xid B cells. Importantly, viability after stimulation correlated with the induced expression of bcl-XL. In fresh ex vivo small resting B cells from wild-type mice there was only barely detectable bcl-XL protein, but there was more in the larger, low-density ("activated") splenic B cells and peritoneal B cells. In vitro Bcl-XL induction following ligation of sIgM-required BTK, was cyclosporin A (CsA)-sensitive and dependent on extracellular Ca2+. CD40-mediated induction of bcl-x required neither wild-type BTK nor extracellular Ca2+ and was insensitive to CsA. These results indicate that BTK lies upstream of bcl-XL in the sIgM but not the CD40 activation pathway. bcl-XL is the first induced protein to be placed downstream of BTK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-term efficacy of gene therapy using bone marrow transplantation requires the engraftment of genetically altered totipotent hematopoietic stem cells (THSCs). Ex vivo expansion of corrected THSCs is one way to increase the efficiency of the procedure. Similarly, selective in vivo expansion of the therapeutic THSCs rather than the endogenous THSCs could favor the transplant. To test whether a conferred proliferative advantage gene can facilitate the in vitro and in vivo expansion of hematopoietic stem cells, we have generated transgenic mice expressing a truncated receptor for the growth factor erythropoietin. These mice are phenotypically normal, but when treated in vivo with exogenous erythropoietin they exhibit a marked increase in multipotent, clonogenic hematopoietic cells [colony-forming units in the spleen (CFU-S) and CFUs that give rise to granulocytes, erythroid cells, macrophages, and megakaryocytes within the same colony (CFU-GEMM)] in comparison with the wild-type mice. In addition, long-term in vitro culture of tEpoR transgenic bone marrow in the presence of erythropoietin induces exponential expansion of trilineage hematopoietic stem cells not seen with wild-type bone marrow. Thus, the truncated erythropoietin receptor gene shows promise as a means for obtaining cytokine-inducible hematopoietic stem cell proliferation to facilitate the direct targeting of THSCs and to provide a competitive repopulation advantage for transplanted therapeutic stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nerve growth factor (NGF) stimulates functional recovery from cognitive impairments associated with aging, either when administered as a purified protein or by means of gene transfer to the basal forebrain. Because gene transfer procedures need to be tested in long-term experimental paradigms to assess their in vivo efficiency, we have used ex vivo experimental gene therapy to provide local delivery of NGF to the aged rat brain over a period of 2.5 months by transplanting immortalized central nervous system-derived neural stem cells genetically engineered to secrete NGF. By grafting them at two independent locations in the basal forebrain, medial septum and nucleus basalis magnocellularis, we show that functional recovery as assessed in the Morris water maze can be achieved by neurotrophic stimulation of any of these cholinergic cell groups. Moreover, the cholinergic neurons in the grafted regions showed a hypertrophic response resulting in a reversal of the age-associated atrophy seen in the learning-impaired aged control rats. Long-term expression of the transgene lead to an increased NGF tissue content (as determined by NGF-ELISA) in the transplanted regions up to at least 10 weeks after grafting. We conclude that the gene transfer procedure used here is efficient to provide the brain with a long-lasting local supply of exogenous NGF, induces long-term functional recovery of cognitive functions, and that independent trophic stimulation of the medial septum or nucleus basalis magnocellularis has similar consequences at the behavioral level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of their known myelopoietic activities, both interleukin (IL)-3 and IL-1 are often used in combination with other cytokines for in vitro (ex vivo) expansion of stem cells. We have investigated the effects of IL-3 and IL-1 on in vitro expansion of murine hematopoietic stem cells with long-term engraftment capabilities, using a highly purified progenitor population. Lineage-negative, Ly-6A/E+, c-kit+ bone marrow cells from male mice were cultured in suspension in the presence of stem cell factor, IL-6, IL-11, and erythropoietin with or without IL-3 or IL-1. Kinetic studies revealed an exponential increase in total nucleated cells and about 10-fold enhancement of nucleated cells by IL-3 during the initial 10 days. Addition of IL-3 hastened the development but significantly suppressed the peak production of colony-forming cells. Addition of IL-1 also significantly suppressed the numbers of colony-forming cells. The reconstituting ability of the cultured cells was tested by transplanting the expanded male cells into lethally irradiated female mice. The cells expanded from enriched cells in the absence of IL-3 and IL-1 revealed engraftment at 2, 4, 5, and 6 months, whereas addition of IL-3 or IL-1 to the cultures significantly reduced the reconstituting ability. The results suggest that these cytokines may have a modulatory role on the self-renewal of stem cells and further indicate that the use of IL-3 and IL-1 for in vitro expansion of human stem cells needs to be cautiously evaluated.