938 resultados para ESTUARIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freshwater chlorophycean algae are characteristic organic-walled microfossils in recent coastal and shelf sediments from the Beaufort, Laptev and Kara seas (Arctic Ocean). The persistent occurrence of the chlorophycean algae Pediastrum spp. and Botryococcus cf. braunii in marine palynomorph assemblages is related to the discharge of freshwater and suspended matter from the large Siberian and North American rivers into the Arctic shelf seas. The distribution patterns of these algae in the marine environments reflect the predominant deposition of riverine sediments and organic matter along the salinity gradient from the outer estuaries and prodeltas to the shelf break. Sedimentary processes overprint the primary distribution of these algae. Resuspension of sediments by waves and bottom currents may transport sediments in the bottom nepheloid layer along the submarine channels to the shelf break. Bottom sediments and microfossils may be incorporated into sea ice during freeze-up in autumn and winter leading to an export from the shelves into the deep sea. The presence of these freshwater algae in sea-ice and bottom sediments in the central Arctic Ocean confirm that transport in sea ice is an important process which leads to a redistribution of shallow water microfossils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dinoflagellate cysts are useful for reconstructing upper water conditions. For adequate reconstructions detailed information is required about the relationship between modern day environmental conditions and the geographic distribution of cysts in sediments. This Atlas summarises the modern global distribution of 71 organicwalled dinoflagellate cyst species. The synthesis is based on the integration of literature sources together with data of 2405 globally distributed surface sediment samples that have been preparedwith a comparable methodology and taxonomy. The distribution patterns of individual cyst species are being comparedwith environmental factors that are knownto influence dinoflagellate growth, gamete production, encystment, excystment and preservation of their organic-walled cysts: surface water temperature, salinity, nitrate, phosphate, chlorophyll-a concentrations and bottom water oxygen concentrations. Graphs are provided for every species depicting the relationship between seasonal and annual variations of these parameters and the relative abundance of the species. Results have been compared with previously published records; an overview of the ecological significance as well as information about the seasonal production of each individual species is presented. The relationship between the cyst distribution and variation in the aforementioned environmental parameters was analysed by performing a canonical correspondence analysis. All tested variables showed a positive relationship on the 99% confidence level. Sea-surface temperature represents the parameter corresponding to the largest amount of variance within the dataset (40%) followed by nitrate, salinity, phosphate and bottom-water oxygen concentration, which correspond to 34%, 33%, 25% and 24% of the variance, respectively. Characterisations of selected environments as well as a discussion about how these factors could have influenced the final cyst yield in sediments are included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of spatial and temporal changes in modern and past sea-ice occurrence may help to understand the processes controlling the recent decrease in Arctic sea-ice cover. Here, we determined concentrations of IP25, a novel biomarker proxy for sea ice developed in recent years, phytoplankton-derived biomarkers (brassicasterol and dinosterol) and terrigenous biomarkers (campesterol and ß-sitosterol) in the surface sediments from the Kara and Laptev seas to estimate modern spatial (seasonal) sea-ice variability and organic-matter sources. C25-HBI dienes and trienes were determined as additional paleoenvironmental proxies in the study area. Furthermore, a combined phytoplankton-IP25 biomarker approach (PIP25 index) is used to reconstruct the modern sea-ice distribution more quantitatively. The terrigenous biomarkers reach maximum concentrations in the coastal zones and estuaries, reflecting the huge discharge by the major rivers Ob, Yenisei and Lena. Maxima in phytoplankton biomarkers indicating increased primary productivity were found in the seasonally ice-free central part of the Kara and Laptev seas. Neither IP25 nor PIP25, however, show a clear and simple correlation with satellite sea-ice distribution in our study area due to the complex environmental conditions in our study area and the transportation process of sea-ice diatom in the water column. Differences in the diene/IP25 and triene/IP25 ratios point to different sources of these HBIs and different environmental conditions. The diene/IP25 ratio seems to correlate positively with sea-surface temperature, while negatively with salinity distributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"September 1989."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"June 1972."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Issued October 1977.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to determine the effects, if any, of sublethal concentrations of suspended materials on the fish in estuarine systems. Experimental sediment suspensions reproduced the concentrations frequently found during flooding and at dredging sites and dredged-material disposal sites. The suspensions were of natural sediment, obtained from the Patuxent River estuary, Maryland, or commercially available Fuller's earth. Fish were collected in the Patuxent River estuary and transported to the laboratory. The selected fish species inhabited ecologically different sections of the estuary; therefore, the overall reactions of each species were unique. Seven species of estuarine fish were exposed to Fuller's earth and natural sediment suspensions for timed periods and hematological changes were noted. The effects of various concentrations of Fuller's earth suspensions on white perch gill tissue were determined. Oxygen consumption rates of striped bass, white perch, and toadfish were measured in filtered Patuxent River water and compared to consumption rates in filtered river water suspensions of Fuller's earth or Patuxent River sediment. Fish showed signs of stress in response to suspended sediments in most of the experiments. Results indicate that sublethal concentrations of suspended solids can affect estuarine fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estuaries provide crucial ecosystem functions and contain significant socio-economic value. Within Washington State, estuaries supply rearing habitat for juvenile salmon during their transition period from freshwater to open sea. In order to properly manage wetland resources and restore salmon habitat, the mechanisms through which estuaries evolve and adapt to pressures from climate change, most notably eustatic sea level rise, must be understood. Estuaries maintain elevation relative to sea level rise through vertical accretion of sediment. This report investigates the processes that contribute to local surface elevation change in the Snohomish Estuary, conveys preliminary surface elevation change results from RTK GPS monitoring, and describes how surface elevation change will be monitored with a network of RSET-MH’s. Part of the tidal wetlands within the Snohomish River Estuary were converted for agricultural and industrial purposes in the 1800’s, which resulted in subsidence of organic soils and loss of habitat. The Tulalip Tribes, the National Oceanic and Atmospheric Administration (NOAA), Northwest Indian Fisheries Commission (NWIFC), and the Environmental Protection Agency (EPA) are conducting a large-scale restoration project to improve ecosystem health and restore juvenile salmon habitat. A study by Crooks et al. (2014) used 210Pb and carbon densities within sediment cores to estimate wetland re-building capacities, sediment accretion rates, and carbon sequestration potential within the Snohomish Estuary. This report uses the aforementioned study in combination with research on crustal movement, tidal patterns, sediment supply, and sea level rise predictions in the Puget Sound to project how surface elevation will change in the Snohomish Estuary with respect to sea level rise. Anthropogenic modification of the floodplain has reduced the quantity of vegetation and functional connectivity within the Snohomish Estuary. There have been losses up to 99% in vegetation coverage from historic extents within the estuary in both freshwater and mesohaline environments. Hydrographic monitoring conducted by NOAA and the Tulalip Tribe shows that 85% of the historic wetland area is not connected to the main stem of the Snohomish (Jason Hall 2014, unpublished data, NOAA). As vegetation colonization and functional connectivity of the floodplains of the Snohomish estuary is re-established through passive and active restoration, sediment transport and accretion is expected to increase. Under the Intergovernmental Panel on Climate Change (IPCC) “medium- probability” scenario sea level is projected to rise at a rate of 4.28 mm/year in the Puget Sound. Sea level rise in the Snohomish Estuary will be exacerbated from crustal deformation from subsidence and post-glacial rebound, which are measured to be -1.4 mm/year and -0.02 mm/year, respectively. Sediment accretion rates calculated by Crooks et al. (2014) and RTK GPS monitoring of surface elevation change of the Marysville Mitigation site from 2011-2014 measured vertical accretion rates that range from -48-19 mm/year and have high spatial variability. Sediment supply is estimated at 490 thousand tons/year, which may be an under-estimate because of the exclusion of tidal transport in this value. The higher rates of sediment accretion measured in the Snohomish Estuary suggest that the Snohomish will likely match or exceed the pace of sea level rise under “medium-probability” projections. The network of RSET-MH instruments will track surface elevation change within the estuary, and provide a more robust dataset on rates of surface elevation change to quantify how vertical accretion and subsidence are contributing to surface elevation change on a landscape scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445