932 resultados para ENERGY FUNCTION
Resumo:
The growth of graphene on SiC/Si substrates is an appealing alternative to the growth on bulk SiC for cost reduction and to better integrate the material with Si based electronic devices. In this paper, we present a complete in-situ study of the growth of epitaxial graphene on 3C SiC (111)/Si (111) substrates via high temperature annealing (ranging from 1125˚C to 1375˚C) in ultra high vacuum (UHV). The quality and number of graphene layers have been thoroughly investigated by using x-ray photoelectron spectroscopy (XPS), while the surface characterization have been studied by scanning tunnelling microscopy (STM). Ex-situ Raman spectroscopy measurements confirm our findings, which demonstrate the exponential dependence of the number of graphene layer from the annealing temperature.
Resumo:
It has been reported that poor nutritional status, in the form of weight loss and resulting body mass index (BMI) changes, is an issue in people with Parkinson's disease (PWP). The symptoms resulting from Parkinson's disease (PD) and the side effects of PD medication have been implicated in the aetiology of nutritional decline. However, the evidence on which these claims are based is, on one hand, contradictory, and on the other, restricted primarily to otherwise healthy PWP. Despite the claims that PWP suffer from poor nutritional status, evidence is lacking to inform nutrition-related care for the management of malnutrition in PWP. The aims of this thesis were to better quantify the extent of poor nutritional status in PWP, determine the important factors differentiating the well-nourished from the malnourished and evaluate the effectiveness of an individualised nutrition intervention on nutritional status. Phase DBS: Nutritional status in people with Parkinson's disease scheduled for deep-brain stimulation surgery The pre-operative rate of malnutrition in a convenience sample of people with Parkinson's disease (PWP) scheduled for deep-brain stimulation (DBS) surgery was determined. Poorly controlled PD symptoms may result in a higher risk of malnutrition in this sub-group of PWP. Fifteen patients (11 male, median age 68.0 (42.0 – 78.0) years, median PD duration 6.75 (0.5 – 24.0) years) participated and data were collected during hospital admission for the DBS surgery. The scored PG-SGA was used to assess nutritional status, anthropometric measures (weight, height, mid-arm circumference, waist circumference, body mass index (BMI)) were taken, and body composition was measured using bioelectrical impedance spectroscopy (BIS). Six (40%) of the participants were malnourished (SGA-B) while 53% reported significant weight loss following diagnosis. BMI was significantly different between SGA-A and SGA-B (25.6 vs 23.0kg/m 2, p<.05). There were no differences in any other variables, including PG-SGA score and the presence of non-motor symptoms. The conclusion was that malnutrition in this group is higher than that in other studies reporting malnutrition in PWP, and it is under-recognised. As poorer surgical outcomes are associated with poorer pre-operative nutritional status in other surgeries, it might be beneficial to identify patients at nutritional risk prior to surgery so that appropriate nutrition interventions can be implemented. Phase I: Nutritional status in community-dwelling adults with Parkinson's disease The rate of malnutrition in community-dwelling adults (>18 years) with Parkinson's disease was determined. One hundred twenty-five PWP (74 male, median age 70.0 (35.0 – 92.0) years, median PD duration 6.0 (0.0 – 31.0) years) participated. The scored PG-SGA was used to assess nutritional status, anthropometric measures (weight, height, mid-arm circumference (MAC), calf circumference, waist circumference, body mass index (BMI)) were taken. Nineteen (15%) of the participants were malnourished (SGA-B). All anthropometric indices were significantly different between SGA-A and SGA-B (BMI 25.9 vs 20.0kg/m2; MAC 29.1 – 25.5cm; waist circumference 95.5 vs 82.5cm; calf circumference 36.5 vs 32.5cm; all p<.05). The PG-SGA score was also significantly lower in the malnourished (2 vs 8, p<.05). The nutrition impact symptoms which differentiated between well-nourished and malnourished were no appetite, constipation, diarrhoea, problems swallowing and feel full quickly. This study concluded that malnutrition in community-dwelling PWP is higher than that documented in community-dwelling elderly (2 – 11%), yet is likely to be under-recognised. Nutrition impact symptoms play a role in reduced intake. Appropriate screening and referral processes should be established for early detection of those at risk. Phase I: Nutrition assessment tools in people with Parkinson's disease There are a number of validated and reliable nutrition screening and assessment tools available for use. None of these tools have been evaluated in PWP. In the sample described above, the use of the World Health Organisation (WHO) cut-off (≤18.5kg/m2), age-specific BMI cut-offs (≤18.5kg/m2 for under 65 years, ≤23.5kg/m2 for 65 years and older) and the revised Mini-Nutritional Assessment short form (MNA-SF) were evaluated as nutrition screening tools. The PG-SGA (including the SGA classification) and the MNA full form were evaluated as nutrition assessment tools using the SGA classification as the gold standard. For screening, the MNA-SF performed the best with sensitivity (Sn) of 94.7% and specificity (Sp) of 78.3%. For assessment, the PG-SGA with a cut-off score of 4 (Sn 100%, Sp 69.8%) performed better than the MNA (Sn 84.2%, Sp 87.7%). As the MNA has been recommended more for use as a nutrition screening tool, the MNA-SF might be more appropriate and take less time to complete. The PG-SGA might be useful to inform and monitor nutrition interventions. Phase I: Predictors of poor nutritional status in people with Parkinson's disease A number of assessments were conducted as part of the Phase I research, including those for the severity of PD motor symptoms, cognitive function, depression, anxiety, non-motor symptoms, constipation, freezing of gait and the ability to carry out activities of daily living. A higher score in all of these assessments indicates greater impairment. In addition, information about medical conditions, medications, age, age at PD diagnosis and living situation was collected. These were compared between those classified as SGA-A and as SGA-B. Regression analysis was used to identify which factors were predictive of malnutrition (SGA-B). Differences between the groups included disease severity (4% more severe SGA-A vs 21% SGA-B, p<.05), activities of daily living score (13 SGA-A vs 18 SGA-B, p<.05), depressive symptom score (8 SGA-A vs 14 SGA-B, p<.05) and gastrointestinal symptoms (4 SGA-A vs 6 SGA-B, p<.05). Significant predictors of malnutrition according to SGA were age at diagnosis (OR 1.09, 95% CI 1.01 – 1.18), amount of dopaminergic medication per kg body weight (mg/kg) (OR 1.17, 95% CI 1.04 – 1.31), more severe motor symptoms (OR 1.10, 95% CI 1.02 – 1.19), less anxiety (OR 0.90, 95% CI 0.82 – 0.98) and more depressive symptoms (OR 1.23, 95% CI 1.07 – 1.41). Significant predictors of a higher PG-SGA score included living alone (β=0.14, 95% CI 0.01 – 0.26), more depressive symptoms (β=0.02, 95% CI 0.01 – 0.02) and more severe motor symptoms (OR 0.01, 95% CI 0.01 – 0.02). More severe disease is associated with malnutrition, and this may be compounded by lack of social support. Phase II: Nutrition intervention Nineteen of the people identified in Phase I as requiring nutrition support were included in Phase II, in which a nutrition intervention was conducted. Nine participants were in the standard care group (SC), which received an information sheet only, and the other 10 participants were in the intervention group (INT), which received individualised nutrition information and weekly follow-up. INT gained 2.2% of starting body weight over the 12 week intervention period resulting in significant increases in weight, BMI, mid-arm circumference and waist circumference. The SC group gained 1% of starting weight over the 12 weeks which did not result in any significant changes in anthropometric indices. Energy and protein intake (18.3kJ/kg vs 3.8kJ/kg and 0.3g/kg vs 0.15g/kg) increased in both groups. The increase in protein intake was only significant in the SC group. The changes in intake, when compared between the groups, were no different. There were no significant changes in any motor or non-motor symptoms or in "off" times or dyskinesias in either group. Aspects of quality of life improved over the 12 weeks as well, especially emotional well-being. This thesis makes a significant contribution to the evidence base for the presence of malnutrition in Parkinson's disease as well as for the identification of those who would potentially benefit from nutrition screening and assessment. The nutrition intervention demonstrated that a traditional high protein, high energy approach to the management of malnutrition resulted in improved nutritional status and anthropometric indices with no effect on the presence of Parkinson's disease symptoms and a positive effect on quality of life.
Resumo:
This thesis is aimed at further understanding the uppermost lipid-filled membranous layer (i.e. surface amorphous layer (SAL)) of articular cartilage and to develop a scientific framework for re-introducing lipids onto the surface of lipid-depleted articular cartilage (i.e. "resurfacing"). The outcome will potentially contribute to knowledge that will facilitate the repair of the articular surface of cartilage where degradation is limited to the loss of the lipids of the SAL only. The surface amorphous layer is of utmost importance to the effective load-spreading, lubrication, and semipermeability (which controls its fluid management, nutrient transport and waste removal) of articular cartilage in the mammalian joints. However, because this uppermost layer of cartilage is often in contact during physiological function, it is prone to wear and tear, and thus, is the site for damage initiation that can lead to the early stages of joint condition like osteoarthritis, and related conditions that cause pain and discomfort leading to low quality of life in patients. It is therefore imperative to conduct a study which offers insight into remedying this problem. It is hypothesized that restoration (resurfacing) of the surface amorphous layer can be achieved by re-introducing synthetic surface-active phospholipids (SAPL) into the joint space. This hypothesis was tested in this thesis by exposing cartilage samples whose surface lipids had been depleted to individual and mixtures of synthetic saturated and unsaturated phospholipids. The surfaces of normal, delipidized, and relipidized samples of cartilage were characterized for their structural integrity and functionality using atomic force microscope (AFM), confocal microscope (COFM), Raman spectroscopy, magnetic resonance imaging (MRI) with image processing in the MATLAB® environment and mechanical loading experiments. The results from AFM imaging, confocal microscopy, and Raman spectroscopy revealed a successful deposition of new surface layer on delipidized cartilage when incubated in synthetic phospholipids. The relipidization resulted in a significant improvement in the surface nanostructure of the artificially degraded cartilage, with the complete SAPL mixture providing better outcomes in comparison to those created with the single SAPL components (palmitoyl-oleoyl-phosphatidylcholine, POPC and dipalmitoyl-phosphatidylcholine, DPPC). MRI analysis revealed that the surface created with the complete mixture of synthetic lipids was capable of providing semipermeability to the surface layer of the treated cartilage samples relative to the normal intact surface. Furthermore, deformation energy analysis revealed that the treated samples were capable of delivering the elastic properties required for load bearing and recovery of the tissue relative to the normal intact samples, with this capability closer between the normal and the samples incubated in the complete lipid mixture. In conclusion, this thesis has established that it is possible to deposit/create a potentially viable layer on the surface of cartilage following degradation/lipid loss through incubation in synthetic lipid solutions. However, further studies will be required to advance the ideas developed in this thesis, for the development of synthetic lipid-based injections/drugs for treatment of osteoarthritis and other related joint conditions.
Resumo:
Electrostatic discharges have been identified as the most likely cause in a number of incidents of fire and explosion with unexplained ignitions. The lack of data and suitable models for this ignition mechanism creates a void in the analysis to quantify the importance of static electricity as a credible ignition mechanism. Quantifiable hazard analysis of the risk of ignition by static discharge cannot, therefore, be entirely carried out with our current understanding of this phenomenon. The study of electrostatics has been ongoing for a long time. However, it was not until the wide spread use of electronics that research was developed for the protection of electronics from electrostatic discharges. Current experimental models for electrostatic discharge developed for intrinsic safety with electronics are inadequate for ignition analysis and typically are not supported by theoretical analysis. A preliminary simulation and experiment with low voltage was designed to investigate the characteristics of energy dissipation and provided a basis for a high voltage investigation. It was seen that for a low voltage the discharge energy represents about 10% of the initial capacitive energy available and that the energy dissipation was within 10 ns of the initial discharge. The potential difference is greatest at the initial break down when the largest amount of the energy is dissipated. The discharge pathway is then established and minimal energy is dissipated as energy dissipation becomes greatly influenced by other components and stray resistance in the discharge circuit. From the initial low voltage simulation work, the importance of the energy dissipation and the characteristic of the discharge were determined. After the preliminary low voltage work was completed, a high voltage discharge experiment was designed and fabricated. Voltage and current measurement were recorded on the discharge circuit allowing the discharge characteristic to be recorded and energy dissipation in the discharge circuit calculated. Discharge energy calculations show consistency with the low voltage work relating to discharge energy with about 30-40% of the total initial capacitive energy being discharged in the resulting high voltage arc. After the system was characterised and operation validated, high voltage ignition energy measurements were conducted on a solution of n-Pentane evaporating in a 250 cm3 chamber. A series of ignition experiments were conducted to determine the minimum ignition energy of n-Pentane. The data from the ignition work was analysed with standard statistical regression methods for tests that return binary (yes/no) data and found to be in agreement with recent publications. The research demonstrates that energy dissipation is heavily dependent on the circuit configuration and most especially by the discharge circuit's capacitance and resistance. The analysis established a discharge profile for the discharges studied and validates the application of this methodology for further research into different materials and atmospheres; by systematically looking at discharge profiles of test materials with various parameters (e.g., capacitance, inductance, and resistance). Systematic experiments looking at the discharge characteristics of the spark will also help understand the way energy is dissipated in an electrostatic discharge enabling a better understanding of the ignition characteristics of materials in terms of energy and the dissipation of that energy in an electrostatic discharge.
Resumo:
There are many variables to consider in the design of an electric motor. However, meeting the performance requirements for an electric vehicle drive may cause a designer to loose focus on its typical operation and hence fail to optimise the motor in the region where it processes the most power. This paper investigates operating requirements of electric vehicle motor drives using the University concept vehicle as an example. The paper outlines a methodology for determining primary operating region of a vehicle drive. The methodology is applied to standard driving cycles that are commonly used in the design and testing of vehicles.
Resumo:
This paper presents a design technique of a fully regenerative dynamic dynamometer. It incorporates an energy storage system to absorb the energy variation due to dynamometer transients. This allows the minimum power electronics requirement at the grid to supply the losses. The simulation results of the full system over a driving cycle show the amount of energy required to complete a driving cycle, therefore the size of the energy storage system can be determined.
Resumo:
This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.
Resumo:
This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.
Resumo:
Multilevel converters can achieve an overall effective switch frequency multiplication and consequent ripple reduction through the cancellation of the lowest order switch frequency terms. This paper investigates the harmonic content and the frequency response of these multimodulator converters. It is shown that the transfer function of uniformly sampled modulators is a bessel function associated with the inherent sampling process. Naturally sampled modulators have a flat transfer function, but multiple switchings per switch cycle will occur unless the input is slew-rate limited. Lower sideband harmonics of the effective carrier frequency and, in uniform converters, harmonics of the input signal also limit the useful bandwidth. Observations about the effect of the number of converters, their type (naturally or uniformly sampled), and the ratio of modulating frequency and switch frequency are made
Resumo:
Research background For almost 80 years the Chuck Taylor (or Chuck T's) All Star basketball shoe has been an iconic item of fashion apparel. The Chuck T's were first designed in 1921 by Converse, an American shoe company and over the decades they became a popular item not purely for sports and athletic purposes but rather evolved into the shoe of choice for many subcultural groups as a fashion item. In some circles the Chuck Taylor is still seen as the "coolest" sneaker of all time - one which will never go out of fashion regardless of changing trends. With over 600 millions pairs sold all over the world since its release, the Converse shoe is representative of not only a fashion culture - but also of a consumption culture - that evolved as the driving force behind the massive growth of the Western economic system during the 20th Century. Artisan Gallery (Brisbane), in conjunction with the exhibition Reboot: Function, Fashion and the Sneaker, a history of the sneaker, selected 20 designers to customise and re-design the classic Converse Chuck Taylor All Stars shoe and in doing so highlighted the diversity of forms possible for creative outcomes. As Artisan Gallery Curator Kirsten Fitzpatrick states “We were expecting people to draw and paint on them. Instead, we had shoes... mounted as trophies.." referring to the presentation of "Converse Consumption". The exhibition ran from 21 June – 16 August 2012: Research question The Chuck T’s is one of many overwhelmingly commercially successful designs of the last century. Nowadays we are faced with the significant problems of overconsumption and the stress this causes on the natural ecosystem; and on people as a result. As an active member of the industrial design fraternity – a discipline that sits at the core of this problem - how can I use this opportunity to comment on the significant issue of consumption? An effective way to do this was to associate consumption of goods with consumption of sugar. There are significant similarities between our ceaseless desires to consume products and our fervent need to consume indulgent sweet foods. Artisan Statement Delicious, scrumptious, delectable... your pupils dilate, your blood pressure spikes, your liver goes into overdrive. Immediately, your brain cuts off the adenosine receptors, preventing drowsiness. Your body increases dopamine production, in-turn stimulating the pleasure receptors in your brain. Your body absorbs all the sweetness and turns it into fat – while all the nutrients that you actually require are starting to be destroyed, about to be expelled. And this is only after one bite! After some time though, your body comes crashing back to earth. You become irritable and begin to feel sluggish. Your eyelids seem heavy while your breathing pattern changes. Your body has consumed all the energy and destroyed all available nutrients. You literally begin to shut down. These are the physiological effects of sugar consumption. A perfect analogy for our modern day consumer driven world. Enjoy your dessert! Research contribution “Converse Consumption” contributes to the conversation regarding over-consumption by compelling people to reflect on their consumption behaviour through the reconceptualising of the deconstructed Chuck T’s in an attractive edible form. By doing so the viewer has to deal with the desire to consume the indulgent looking dessert with the contradictory fact that it is comprised of a pair of shoes. The fact that the shoes are Chuck T’s make the effect even more powerful due to their iconic status. These clashing motivations are what make “Converse Consumption” a bizarre yet memorable experience. Significance The exhibition was viewed by an excess of 1000 people and generated exceptional media coverage and public exposure/impact. As Artisan Gallery Curator Kirsten Fitzpatrick states “20 of Brisbane's best designers were given the opportunity to customise their own Converse Sneakers, with The Converse Blank Canvas Project.” And to be selected in this category demonstrates the calibre of importance for design prominence.
Resumo:
Background Epidemiological studies have shown a reduced incidence of cardiovascular disease in the Mediterranean population attributed to the consumption of dietary olive oil rich in antioxidants. This has lead to increased interest in the antioxidant properties of other phenolic compounds of olive tree products. It has been suggested that olive leaf extract may also have health benefits due to its antioxidant and anti-inflammatory activities. Antioxidants can prevent the effects of oxidative metabolism by scavenging free radicals and decreasing the hyperactivity of platelets associated with the development of occlusive thrombosis. No studies to date have investigated the effects of olive leaf extract on platelet function to our knowledge. Improved understanding of the antioxidant properties of olive leaf extract and its effect on platelet function could lead to improved cardiovascular health. Objective The current study used an olive leaf extract prepared from the Olea europaea L. tree. The aim was to determine if polyphenols in olive leaf extract would reduce platelet activity and, to establish an optimal dose in vitro that would reduce platelet aggregation and ATP release. Design Eleven subjects with normal platelet counts (150–400 x 109/L) were recruited for the current in vitro study. Olive leaf extract was added to citrated whole blood to obtain five concentrations ranging from 5.4 ug/mL to 54.0 ug/mL for a dose response curve. Baseline samples, without olive leaf extract were used as a negative control for each subject. After 2 hours incubation with olive leaf extract samples were analyzed for platelet aggregation and ATP release from platelets stimulated by the addition of collagen. Results Whole blood analysis (n=11) showed a clear dose-dependant reduction in platelet aggregation with the increasing olive leaf extract concentrations (p<0.0001). There was also a similar decrease in ATP release from collagen stimulated platelets (p=0.02). Conclusion In the current study the olive leaf extract obtained from Olea europaea L. inhibited platelet aggregation and ATP release from collagen stimulated platelets in vitro. This study suggests olive leaf extract may prevent occlusive thrombosis by reducing platelet hyperactivity.
Resumo:
Electricity is the cornerstone of modern life. It is essential to economic stability and growth, jobs and improved living standards. Electricity is also the fundamental ingredient for a dignified life; it is the source of such basic human requirements as cooked food, a comfortable living temperature and essential health care. For these reasons, it is unimaginable that today's economies could function without electricity and the modern energy services that it delivers. Somewhat ironically, however, the current approach to electricity generation also contributes to two of the gravest and most persistent problems threatening the livelihood of humans. These problems are anthropogenic climate change and sustained human poverty. To address these challenges, the global electricity sector must reduce its reliance on fossil fuel sources. In this context, the object of this research is twofold. Initially it is to consider the design of the Renewable Energy (Electricity) Act 2000 (Cth) (Renewable Electricity Act), which represents Australia's primary regulatory approach to increase the production of renewable sourced electricity. This analysis is conducted by reference to the regulatory models that exist in Germany and Great Britain. Within this context, this thesis then evaluates whether the Renewable Electricity Act is designed effectively to contribute to a more sustainable and dignified electricity generation sector in Australia. On the basis of the appraisal of the Renewable Electricity Act, this thesis contends that while certain aspects of the regulatory regime have merit, ultimately its design does not represent an effective and coherent regulatory approach to increase the production of renewable sourced electricity. In this regard, this thesis proposes a number of recommendations to reform the existing regime. These recommendations are not intended to provide instantaneous or simple solutions to the current regulatory regime. Instead, the purpose of these recommendations is to establish the legal foundations for an effective regulatory regime that is designed to increase the production of renewable sourced electricity in Australia in order to contribute to a more sustainable and dignified approach to electricity production.
Resumo:
A qualitative analysis of the expected dilatation strain field in the vicinity of an array of grain-boundary (GB) dislocations is presented. The analysis provides a basis for the prediction of the critical current densities (jc) across low-angle YBa2Cu3O7- (YBCO) GBs as a function of their energy. The introduction of the GB energy allows the extension of the analysis to high-angle GBs using established models which predict the GB energy as a function of misorientation angle. The results are compared to published data for jc across [001]-tilt YBCO GBs for the full range of misorientations, showing a good fit. Since the GB energy is directly related to the GB structure, the analysis may allow a generalization of the scaling behavior of jc with the GB energy. © 1995 The American Physical Society.
Resumo:
Y123 samples with varying amounts of added Y211, PtO 2 and CeO 2 have been melt processed and quenched from temperatures between 960°C and 1100°C. The microstructures of the quenched samples have been characterized using a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, microprobe analysis, energy-dispersive x-ray spectroscopy and wavelength-dispersive x-ray spectroscopy. The Ba-Cu-O-rich melt undergoes complex changes as a function of temperature and time. A region of stability of BaCuO 2 (BC1) and BaCu 2O 2 (BC2) exists below 1040°C in samples of Y123 + 20 mol% Y211. Ba 2Cu 3O 5 is stabilized by rapid quenching but appears to separate into BC1 and BC2 at lower quenching rates. PtO 2 and CeO 2 additions affect the distribution and volume fractions of the two Ba-Cu-oxide phases.
Resumo:
Samples of YBa2Cu3O7-y + 20 mol% Y2BaCuO5 have been melt processed and quenched from temperatures ranging from 975 to 1100°C. The microstructure of the samples have been characterized via a combination of x-ray diffractometry, optical microscopy, scanning electron microscopy, energy dispersive x-ray spectrometry and wavelength dispersive x-ray spectrometry. BaCuO2 (BC1) and BaCu2O2 (BC2) crystallize from the melt of samples quenched from temperatures between 985 and 1100°C in air. The average yttrium content differs for BC1 and BC2, and it is 4.3 and 5.1 at.%, respectively. Holding times of 20 hours at temperatures above or equal to 1040°C give rise to a dendritic pattern of BC1 surrounded by BC2. The complex changes of the nature of the melt as a function of temperature and time are likely to play a significant role in the mechanism of melt texturing.