981 resultados para ELECTRON MICROSCOPY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The low cycle fatigue behaviour of precipitation strengthened nickel-base superalloy 720Li containing a low concentration of interstitial carbon and boron was studied at 25, 400 and 650 degrees C. Cyclic stress response at all temperatures was stable under fully reversed constant total strain amplitude (Delta epsilon/2) when Delta epsilon/2 <= 0.6%. At Delta epsilon/2 > 0.6%, cyclic hardening was followed by softening, until fracture at 25 and 650 degrees C. At 400 degrees C, however, cyclic stress plateaued after initial hardening. Dislocation-dislocation interactions and precipitate shearing were the micromechanisms responsible for the cyclic hardening and softening, respectively. The number of reversals to failure vs. plastic strain amplitude plot exhibits a bilinear Coffin-Manson relation. Transmission electron microscopy substructures revealed that planar slip was the major deformation mode under the conditions examined. However, differences in its distribution were observed to be the cause for the bilinearity in fatigue lives. The presence of fine deformation twins at low Delta epsilon/2 at 650 degrees C suggests the role of twinning in homogenization of cyclic deformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An outbreak of acute respiratory disease in layers was diagnosed as being of dual nature due to fowlpox and infectious laryngotracheitis using a multidisciplinary approach including virus isolation, histopathology, electron microscopy and polymerase chain reaction (PCR). The diagnosis was based on virus isolation of gallid herpesvirus 1 (GaHV-1) in chicken kidney cells and fowlpox virus (FWPV) in 9-day-old chicken embryonated eggs inoculated via the chorioallantoic membrane. The histopathology of tracheas from dead birds revealed intra-cytoplasmic and intra-nuclear inclusions suggestive of poxvirus and herpesvirus involvement. The presence of FWPV was further confirmed by electron microscopy, PCR and histology. All FWPV isolates contained the long terminal repeats of reticuloendotheliosis virus as demonstrated by PCR. GaHV-1 isolates were detected by PCR and were shown to have a different restriction fragment length polymorphism pattern when compared with the chicken embryo origin SA2 vaccine strain; however, they shared the same pattern with the Intervet chicken embryo origin vaccine strain. This is a first report of dual infection of chickens with GaHV-1 and naturally occurring FWPV with reticuloendotheliosis virus insertions. Further characterization of the viruses was carried out and the results are reported here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The compounds Pb2PtO4 and PbPt2O4 were synthesized from an intimate mixture of yellow PbO and Pt metal powders by heating under pure oxygen gas at 973 K for periods up to 600 ks with intermediate grinding and recompacting. Both compounds were found to decompose on heating in pure oxygen to PbO and Pt, apparently in conflict with the requirements for equilibrium phase relations in the ternary system Pb–Pt–O. The oxygen chemical potential corresponding to the three-phase mixtures, Pb2PtO4 + PbO + Pt and PbPt2O4 + PbO + Pt were measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the solid electrolyte and pure oxygen gas at 0.1 MPa pressure as the reference electrode. The standard Gibbs free energies of formation of the ternary oxides were derived from the measurements. Analysis of the results indicated that the equilibrium involving three condensed phases Pb2PtO4 + PbO + Pt is metastable. Under equilibrium conditions, Pb2PtO4 should have decomposed to a mixture of PbO and PbPt2O4. Measurement of the oxygen potential corresponding to this equilibrium decomposition as a function of temperature indicated that decomposition temperature in pure oxygen is 1014(±2) K. This was further confirmed by direct determination of phase relations in the ternary Pb–Pt–O by equilibrating several compositions at 1023 K for periods up to 850 ks and phase identification of quenched samples using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Only one ternary oxide PbPt2O4 was stable at 1023 K under equilibrium conditions. Alloys and intermetallic compounds along the Pb–Pt binary were in equilibrium with PbO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quambalaria spp. are eucalypt leaf and shoot pathogens of growing global importance, yet virtually nothing is known regarding the manner in which they infect and colonize their hosts. A study of the infection process of Q. pitereka and Q.eucalypti on Corymbia and Eucalyptus species was thus undertaken using light, scanning and transmission electron microscopy after artificial inoculation. Conidial germination was triggered when relative humidity levels exceeded 90% and commenced within 2 h in the presence of free water. Light reduced germination but did not prevent germination from occurring. Conidial germination and hyphal growth occurred on the upper and lower leaf surfaces with penetration occurring via the stomata or wounds on the leaf surface or juvenile stems. There was no evidence of direct penetration of the host. Following penetration through the stomata, Q. pitereka and Q. eucalypti hyphae grew only intercellularly without the formation of haustoria or interaction apparatus, which is characteristic of the order Microstromatales. Instead, the presence of an interaction zone is demonstrated in this paper. Conidiophores arose through stomatal openings producing conidia 7 days after infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The central nervous system (CNS) is the most cholesterol-rich organ in the body. Cholesterol is essential to CNS functions such as synaptogenesis and formation of myelin. Significant differences exist in cholesterol metabolism between the CNS and the peripheral organs. However, the regulation of cholesterol metabolism in the CNS is poorly understood compared to our knowledge of the regulation of cholesterol homeostasis in organs reached by cholesterol-carrying lipoprotein particles in the circulation. Defects in CNS cholesterol homeostasis have been linked to a variety of neurodegenerative diseases, including common diseases with complex pathogenetic mechanisms such as Alzheimer s disease. In spite of intense effort, the mechanisms which link disturbed cholesterol homeostasis to these diseases remain elusive. We used three inherited recessive neurodegenerative disorders as models in the studies included in this thesis: Niemann-Pick type C (NPC), infantile neuronal ceroid lipofuscinosis and cathepsin D deficiency. Of these three, NPC has previously been linked to disturbed intracellular cholesterol metabolism. Elucidating the mechanisms with which disturbances of cholesterol homeostasis link to neurodegeneration in recessive inherited disorders with known genetic lesions should shed light on how cholesterol is handled in the healthy CNS and help to understand how these and more complex diseases develop. In the first study we analyzed the synthesis of sterols and the assembly and secretion of lipoprotein particles in Npc1 deficient primary astrocytes. We found that both wild type and Npc1 deficient astrocytes retain significant amounts of desmosterol and other cholesterol precursor sterols as membrane constituents. No difference was observed in the synthesis of sterols and the secretion of newly synthesized sterols between Npc1 wild type, heterozygote or knockout astrocytes. We found that the incorporation of newly synthesized sterols into secreted lipoprotein particles was not inhibited by Npc1 mutation, and the lipoprotein particles were similar to those excreted by wild type astrocytes in shape and size. The bulk of cholesterol was found to be secreted independently of secreted NPC2. These observations demonstrate the ability of Npc1 deficient astrocytes to handle de novo sterols, and highlight the unique sterol composition in the developing brain. Infantile neuronal ceroid lipofuscinosis is caused by the deficiency of a functional Ppt1 enzyme in the cells. In the second study, global gene expression studies of approximately 14000 mouse genes showed significant changes in the expression of 135 genes in Ppt1 deficient neurons compared to wild type. Several genes encoding for enzymes of the mevalonate pathway of cholesterol biosynthesis showed increased expression. As predicted by the expression data, sterol biosynthesis was found to be upregulated in the knockout neurons. These data link Ppt1 deficiency to disturbed cholesterol metabolism in CNS neurons. In the third study we investigated the effect of cathepsin D deficiency on the structure of myelin and lipid homeostasis in the brain. Our proteomics data, immunohistochemistry and western blotting data showed altered levels of the myelin protein components myelin basic protein, proteolipid protein and 2 , 3 -cyclic nucleotide 3 phosphodiesterase in the brains of cathepsin D deficient mice. Electron microscopy revealed altered myelin structure in cathepsin D deficient brains. Additionally, plasmalogen-derived alkenyl chains and 20- and 24-carbon saturated and monounsaturated fatty acids typical for glycosphingolipids were found to be significantly reduced, but polyunsaturated species were significantly increased in the knockout brains, pointing to a decrease in white matter. The levels of ApoE and ABCA1 proteins linked to cholesterol efflux in the CNS were found to be altered in the brains of cathepsin D deficient mice, along with an accumulation of cholesteryl esters and a decrease in triglycerols. Together these data demonstrate altered myelin architecture in cathepsin D deficient mice and link cathepsin D deficiency to aberrant cholesterol metabolism and trafficking. Basic research into rare monogenic diseases sheds light on the underlying biological processes which are perturbed in these conditions and contributes to our understanding of the physiological function of healthy cells. Eventually, understanding gained from the study of disease models may contribute towards establishing treatment for these disorders and further our understanding of the pathogenesis of other, more complex and common diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitochondria have evolved from endosymbiotic alpha-proteobacteria. During the endosymbiotic process early eukaryotes dumped the major component of the bacterial cell wall, the peptidoglycan layer. Peptidoglycan is synthesized and maintained by active-site serine enzymes belonging to the penicillin-binding protein and the β-lactamase superfamily. Mammals harbor a protein named LACTB that shares sequence similarity with bacterial penicillin-binding proteins and β-lactamases. Since eukaryotes lack the synthesis machinery for peptidoglycan, the physiological role of LACTB is intriguing. Recently, LACTB has been validated in vivo to be causative for obesity, suggesting that LACTB is implicated in metabolic processes. The aim of this study was to investigate the phylogeny, structure, biochemistry and cell biology of LACTB in order to elucidate its physiological function. Phylogenetic analysis revealed that LACTB has evolved from penicillin binding-proteins present in the bacterial periplasmic space. A structural model of LACTB indicates that LACTB shares characteristic features common to all penicillin-binding proteins and β-lactamases. Recombinat LACTB protein expressed in E. coli was recovered in significant quantities. Biochemical and cell biology studies showed that LACTB is a soluble protein localized in the mitochondrial intermembrane space. Further analysis showed that LACTB preprotein underwent proteolytic processing disclosing an N-terminal tetrapeptide motif also found in a set of cell death-inducing proteins. Electron microscopy structural studies revealed that LACTB can polymerize to form stable filaments with lengths ranging from twenty to several hundred nanometers. These data suggest that LACTB filaments define a distinct microdomain in the intermembrane space. A possible role of LACTB filaments is proposed in the intramitochondrial membrane organization and microcompartmentation. The implications of these findings offer novel insight into the evolution of mitochondria. Further studies of the LACTB function might provide a tool to treat mitochondria-related metabolic diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large-scale production of reliable carbon nanotubes (CNTs) based gas sensors involves the development of scalable and reliable processes for the fabrication of films with controlled morphology. Here, we report for the first time on highly scalable, ultrathin CNT films, to be employed as conductometric sensors for NO2 and NH3 detection at room temperature. The sensing films are produced by dip coating using dissolved CNTs in chlorosulfonic acid as a working solution. This surfactant-free approach does not require any post-treatment for the removal of dispersants or any CNTs functionalization, thus promising high quality CNTs for better sensitivity and low production costs. The effect of CNT film thickness and defect density on the gas sensing properties has been investigated. Detection limits of 1 ppm for NO2 and 7 ppm for NH3 have been achieved at room temperature. The experimental results reveal that defect density and film thickness can be controlled to optimize the sensing response. Gas desorption has been accelerated by continuous in-situ UV irradiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the first time, we have fabricated and tested conductometric sensors based on oxidized liquid galinstan towards NO2 and NH3 gases at low operating temperatures. Galinstan based films on silicon substrates have been studied with two different loadings. Surface morphology of the films was investigated by means of field emission scanning electron microscopy (FESEM). The sensor with higher galinstan loading showed a better sensitivity, which can be attributed to a higher surface area, as confirmed by SEM. At 100°C, a detection limit as low as 1 and 20 ppm was measured for NO2 and NH3, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The n=3 member of the Bi1.5Pb0.5 (Ca, Sr) n+1CunO2n+4+δ system has been prepared and characterized by X-ray diffraction and electron microscopy. High-Tc superconductivity in the n=3 member has been established by resistivity, AC susceptibility and microwave absorption measurements. It has a Tc of not, vert, similar 105K compared to a Tc of not, vert, similar 82K of the corresponding n=2 member.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microstructure of a cast Al---Si alloy-graphite particle composite is examined using optical and analytical scanning electron microscopy. Specimens containing different percentages of graphite were machined by orthogonal planning with 25° and 45° rake angle tools at both 6.5 and 13.2 m min−1. The machining forces are reported and the chip-rake-face friction coefficients and shear flow stresses are calculated. It is shown that the reduction in machining forces with increasing graphite content is due mostly to a decrease in the shear flow stress rather than to lower chip-rake-face friction. Both the polished and the machined surfaces of the composite are rougher than those of the simple alloy, apparently owing to the greater porosity, the tearing out of graphite particles, or the opening of cracks at the graphite particles in the wake of the tool.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapid solidification of Ti-7.3wt.%Cu (near-eutectoid composition), Ti-36.2wt.%Ni and Ti-34.3wt.% Ni-5.8wt.%Si alloys has been carried out by electron beam melting and splat quenching on a water-cooled rotating copper disc. The product obtained was in the form of thin ribbons 60–100 μm thick. Transmission electron microscopy studies of Ti---Cu alloy splats showed that the microstructure consisted of a mixture of martensite and a lamellar eutectoid product. The formation of the intermetallic compound Ti2Cu involved a diffusionless ω transformation and spinodal clustering. In the case of Ti---Ni alloy the as-quenched microstructure is complex, consisting of α, transformed β and intermetallic phases. This could have arisen possibly as a result of local variation in cooling rates. Rapid solidification of Ti---Ni---Si alloy resulted in partial quenching of an amorphous phase. The amorphous phase was seen to be extremely hard (a Vickers hardness of about 800 HV).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV−vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV−vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic π-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocrystalline Ce1-xRuxO2-delta (x = 0.05 and 0.10) of 8-10 nm sizes have been synthesized by hydrothermal method using melamine as complexing agent. Compounds have been characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray analysis (EDX) and their structures have been refined by the Rietveld method.The compounds crystallize in fluorite structure and the composition is Ce1-xRuxO2-x/2 where Ru is in +4 state and Ce is in mixed-valence (+3, +4) state. Substitution of Ru4+ ion in CeO2 activated the lattice oxygen. Ce1-xRuxO2-x/2 reversibly releases 0.22[O] and 0.42[O] for x = 0.05 and 0.10, respectively, which is higher than the maximumpossible OSC of 0.22 [O] observed for Ce0.50Zr0.50O2. Utilization of Higher OSC of Ce1-xRuxO2-delta (x = 0.05 and 0.10) is also reflected in terms of low-temperature CO oxidation with these catalysts, both in the presence and absence of feed oxygen. The Ru4+ ion acts as an active center for reducing molecules (CO, hydrocarbon ``HC'') and oxide ion vacancy acts as an active center for O-2 and NO, leading to low-temperature NO conversion to N-2. Thus due to Ru4+ ion, Ce1-xRuxO2-delta is not just a high oxygen storage material but also shows high activity toward CO, hydrocarbon ``HC'' oxidation, and NO reduction by CO at low temperature with high N-2 selectivity for three-way catalysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much progress in nanoscience and nanotechnology has been made in the past few years thanks to the increased availability of sophisticated physical methods to characterize nanomaterials. These techniques include electron microscopy and scanning probe microscopies, in addition to standard techniques such as X-ray and neutron diffraction, X-ray scattering, and various spectroscopies. Characterization of nanomaterials includes the determination not only of size and shape, but also of the atomic and electronic structures and other important properties. In this article we describe some of the important methods employed for characterization of nanostructures, describing a few case studies for illustrative purposes. These case studies include characterizations of Au, ReO3, and GaN nanocrystals; ZnO, Ni, and Co nanowires; inorganic and carbon nanotubes; and two-dimensional graphene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intracranial artery aneurysms (IAs) are estimated to be present in 2.3% of the population. A rupture of an IA causes subarachnoid hemorrhage, with up to 50% mortality. The annual low rupture risk of an IA indicates that most IAs never rupture. The current treatment options are invasive and somewhat risky. Thus rupture-prone IAs should be identified and this requires a better understanding of the IA wall pathobiology. Inflammatory cell infiltrations have been found to precede IA rupture, indicating the role of inflammation in IA wall degeneration and rupture. The complement system is a key mediator of inflammation and house-hold processing of injured tissue. This study aimed at identifying the role of complement activation in IA wall degeneration and the complement activators involved and determining how the complement system is regulated in the IA wall. In immunostainings, the end-product of complement activation, the terminal complement complex (TCC), was located mainly in the outer part of the IA wall, in areas that had also sustained loss of cells. In electron microscopy, the area of maximum TCC accumulation contained cellular debris and evidence of both apoptotic and necrotic cell death. Complement activation correlated with IA wall degeneration and rupture, de-endothelialization, and T-cell and CD163-positive macrophage infiltration. The complement system was found to become activated in all IAs by the classical pathway, with recruitment of alternative pathway amplification. Of the potential activators immunoglobulins G and M and oxidatively modified lipids were found in large areas. Lipid accumulation was observed to clearly colocalize with TCC and C-reactive protein. In the luminal parts of the IA wall, complement activation was limited by cellular expression of protectin (CD59) and extracellular matrix-bound inhibitors, C4b binding protein and factor H whereas the outer part of the wall lacked cells expressing protectin as well as matrix-bound factor H. In single nucleotide polymorphism-analysis, age-related macular degeneration-associated factor H Y402H polymorphism did not associate with the presence of IAs or their rupture The data suggest that complement activation and TCC formation are involved in IA wall degeneration and rupture. Complement seems to become activated by more than one specific activator. The association of complement with de-endothelialization and expression of several complement activators indicate a possible role of endothelial dysfunction and/or impaired clearance mechanisms. Impaired complement regulation seems to be associated with increased complement activation in IA walls. These results stress the role of chronic inflammation in IA wall pathobiology and the regulatory role of complement within this process. Imaging inflammation would possibly enhance the diagnostics of rupture-prone IAs, and targeting IA treatment to prevent chronic inflammation might improve IA treatment in the future.