983 resultados para E coli


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-replication DNA mismatch repair plays crucial roles in mutation avoidance and maintenance of chromosome stability in both prokaryotes and eukaryotes. In humans, deficiency in this repair system leads to a predisposition for certain cancers. The biochemistry of this repair system has been best studied in a model bacterium Escherichia coli. In this thesis, regulation of expression of mutS, mutL and mutH genes, whose products mediate methyl-directed mismatch (MDM) repair in E. coli, is investigated. One-step affinity purification schemes were developed to purify E. coli MutS, MutL and MutH proteins fused to a His-6-affinity tag. His-6-MutS exhibited the same mismatch binding activity and specificity as the native MutS protein. Purified His-6-MutS, -MutL and -MutH proteins were used to develop quantitative Western blotting assays for amounts of MutS, MuL and MutH proteins under various conditions. It was found that the three proteins were present in relatively low amounts in exponentially growing cells and MutS and MutH were diminished in stationary-phase cells. Further studies indicated that the drop in the amounts of MutS and MutH proteins in stationary-phase cells was mediated through RpoS, a key global regulator of stationary-phase transition. In both exponential- and stationary-phase cells, MutS amount was also negatively regulated by the Hfq (HF-I) global regulator, which is required for RpoS translation, through an RpoS-independent mechanism. $\beta$-galactosidase assays of mutS-lacZ operon and gene fusions suggested that hfq regulates mutS posttranscriptionally, and RNase T2 protection assays revealed that Hfq destabilizes mutS transcripts in exponentially growing cells. To study the relation between regulation of MDM repair and mutagenesis, amounts of MutS, MutL and MutH were measured in starved cells undergoing adaptive mutagenesis. It was found that MutS amount dropped drastically, MutH amount dropped slightly, whereas MutL amount remained essentially constant in starved cells. Overexpression of MutL did not reverse the drop in the amounts of MutS or MutH protein. These results ruled out several explanations for a phenomenon in which overexpression of MutL, but not MutS, reversed adaptive mutagenesis. The findings further suggested that functional MutL is limiting during adaptive mutagenesis. The implications of regulation of the MDM repair are discussed in the context of mutagenesis, pathogenesis and tumorigenesis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin B$\sb6$ (or pyridoxal 5$\sp\prime$-phosphate, PLP) is an essential, ubiquitous coenzyme that affects many aspects of amino acid and cellular metabolism in all organisms. The goal of this thesis is to examine the regulation of PLP biosynthesis in Escherichia coli K-12. First, PdxH oxidase is a PLP biosynthetic enzyme, which uses molecular oxygen as an electron acceptor under aerobic assay conditions. To test if facultative anaerobic E. coli uses another enzyme to replace the function of PdxH oxidase anaerobically, suppressors of a pdxH null mutant were isolated anaerobically after 2-aminopurine or spontaneous mutagenesis. Only one specific bypass mutation in another PLP biosynthetic gene pdxJ was found, suggesting that PdxH oxidase is able to function anaerobically and PdxT utilizes D-1-deoxyxyulose as a substrate. Second, regulation of the serC (pdxF)-aroA operon, which is involved the biosynthesis of L-serine, PLP and aromatic compounds was examined. A serC (pdxF) single gene transcript and a serC (pdXf)-aroA cotranscript initiated at P$\sb{serC\ (pdxF)}$ upstream of serC (pdxF) were detected. The expression of the operon is activated by leucine responsive regulatory protein (LRP) and repressed by cAMP receptor protein-cAMP complex (CRP$\cdot$cAMP) at the transcriptional level. LRP activates the operon by directly binding to the upstream consensus box. Binding of CRP$\cdot$cAMP to the upstream CRP box diminishes the activation effect of LRP. However, deletion of the CRP box did not affect the repression of CRP$\cdot$cAMP, suggesting that CRP$\cdot$cAMP may repress the operon indirectly by stimulating the activity or level of an unidentified repressor. The overall effect of this regulation is to maximize the expression of the operon when the cells are growing in minimal-glucose medium. In addition, the binding and the transcription of P$\sb{serC\ (pdxF)}$ by RNA polymerase require a supercoiled circular DNA, indicating that DNA supercoiling affects the transcription of the operon. Third, regulation of another PLP biosynthetic gene gapB was also examined. gapB is activated by CRP$\cdot$cAMP and repressed by catabolic repressor activator protein (CRA). However, the activation of CRP$\cdot$cAMP is epistatic to the repression of CRA. Due to the CRA repression, gapB was expressed at a low level in all the media tested, suggesting that it may be the rate-limiting step of PLP biosynthesis. In summary, unlike genes in many biosynthetic pathways, PLP biosynthetic genes are regulated by global regulators that are important for carbon and amino acid metabolism, instead of the end product(s) of the pathway. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Involvement of E. coli 23S ribosomal RNA (rRNA) in decoding of termination codons was first indicated by the characterization of a 23S rRNA mutant that causes UGA-specific nonsense suppression. The work described here was begun to test the hypothesis that more 23S rRNA suppressors of specific nonsense mutations can be isolated and that they would occur non-randomly in the rRNA genes and be clustered in specific, functionally significant regions of rRNA.^ Approximately 2 kilobases of the gene for 23S rRNA were subjected to PCR random mutagenesis and the amplified products screened for suppression of nonsense mutations in trpA. All of the suppressor mutations obtained were located in a thirty-nucleotide part of the GTPase center, a conserved rRNA sequence and structure, and they and others made in that region by site-directed mutagenesis were shown to be UGA-specific in their suppression of termination codon mutations. These results proved the initial hypothesis and demonstrated that a group of nucleotides in this region are involved in decoding of the UGA termination codon. Further, it was shown that limitation of cellular availability or synthesis of L11, a ribosomal protein that binds to the GTPase center rRNA, resulted in suppression of termination codon mutations, suggesting the direct involvement of L11 in termination in vivo.^ Finally, in vivo analysis of certain site-specific mutations made in the GTPase center RNA demonstrated that (a) the G$\cdot$A base pair closing the hexanucleotide hairpin loop was not essential for normal termination, (b) the "U-turn" structure in the 1093 to 1098 hexaloop is critical for normal termination, (c) nucleotides A1095 and A1067, necessary for the binding to ribosomes of thiostrepton, an antibiotic that inhibits polypeptide release factor binding to ribosomes in vitro, are also necessary for normal peptide chain termination in vivo, and (d) involvement of this region of rRNA in termination is determined by some unique subset structure that includes particular nucleotides rather than merely by a general structural feature of the GTPase center.^ This work advances the understanding of peptide chain termination by demonstrating that the GTPase region of 23S rRNA participates in recognition of termination codons, through an associated ribosomal protein and specific conserved nucleotides and structural motifs in its RNA. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterotoxigenic Escherichia coli (ETEC) causes significant morbidity and mortality in infants of developing countries and is the most common cause of diarrhea in travelers to these areas. Enterotoxigenic Escherichia coli infections are commonly caused by ingestion of fecally contaminated food. A timely method for the detection of ETEC in foods would be important in the prevention of this disease. A multiplex polymerase chain reaction (PCR) assay which has been successful in detecting the heat-labile and heat-stable toxins of ETEC in stool was examined to determine its utility in foods. This PCR assay, preceded by a glass matrix and chaotropic DNA extraction, was effective in detecting high numbers of ETEC in a variety of foods. Ninety percent of 121 spiked food samples yielded positive results. Samples of salsa from Guadalajara, Mexico and Houston, Texas were collected and underwent DNA extraction and PCR. All samples yielded negative results for both the heat-labile and heat-stable toxins. Samples were also subjected to oligonucleotide probe analysis and resulted in 5 samples positive for ETEC. Upon dilution testing, it was found that positive PCR results only occurred when 12,000 to 1,000,000 bacteria were present in 200 mg of food. Although the DNA extraction and PCR method has been shown to be both sensitive and specific in stool, similar results were not obtained in food samples. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to examine the relationship between enterotoxigenic ETEC and travelers' diarrhea over a period of five years in Guadalajara, Mexico. Specifically, this study identified and characterized ETEC from travelers with diarrhea. The objectives were to study the colonization factor antigens, toxins and antibiotic sensitivity patterns in ETEC from 1992 to 1997 and to study the molecular epidemiology of ETEC by plasmid content and DNA restriction fragment patterns. ^ In this survey of travelers' diarrhea in Guadalajara, Mexico, 928 travelers with diarrhea were screened for enteric pathogens between 1992 and 1997. ETEC were isolated in 195 (19.9%) of the patients, representing the most frequent enteric pathogen identified. ^ A total of 31 antimicrobial susceptibility patterns were identified among ETEC isolates over the five-year period. ^ The 195 ETEC isolates contained two to six plasmids each, which ranged in size from 2.0 to 23 kbp. ^ Three different reproducible rRNA gene restriction patterns (ribotypes R-1 to R-3) were obtained among the 195 isolates with the enzyme, HindIII. ^ Colonization factor antigens (CFAs) were identified in 99 (51%) of the 195 ETEC strains studied. ^ Cluster analysis of the observations seen in the four assays all confirmed the five distinct groups of study-year strains of ETEC. Each group had a >95% similarity level of strains within the group and <60% similarity level between the groups. In addition, discriminant analysis of assay variables used in predicting the ETEC strains, reveal a >80% relationship between both the plasmid and rRNA content of ETEC strains and study-year. ^ These findings, based on laboratory observations of the differences in biochemical, antimicrobial susceptibility, plasmid and ribotype content, suggest complex epidemiology for ETEC strains in a population with travelers' diarrhea. The findings of this study may have implications for our understanding of the epidemiology, transmission, treatment, control and prevention of the disease. It has been suggested that an ETEC vaccine for humans should contain the most prevalent CFAs. Therefore, it is important to know the prevalence of these factors in ETEC in various geographical areas. ^ CFAs described in this dissertation may be used in different epidemiological studies in which the prevalence of CFAs and other properties on ETEC will be evaluated. Furthermore, in spite of an intense search in near 200 ETEC isolates for strains that may have clonal relationship, we failed to identify such strains. However, further studies are in progress to construct suitable live vaccine strains and to introduce several of CFAs in the same host organism by recombinant DNA techniques (Dr. Ann-Mari Svennerholm's lab). (Abstract shortened by UMI.)^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sigma (σ) subunit of eubacterial RNA polymerase is essential for initiation of transcription at promoter sites. σ factor directs the RNA polymerase core subunits ( a2bb′ ) to the promoter consensus elements and thereby confers selectivity for transcription initiation. The N-terminal domain (region 1.1) of Escherichia coli σ70 has been shown to inhibit DNA binding by the C-terminal DNA recognition domains when σ is separated from the core subunits. Since DNA recognition by RNA polymerase is the first step in transcription, it seemed plausible that region 1 might also influence initiation processes subsesquent to DNA binding. This study explores the functional roles of regions 1.1 and 1.2 of σ70 in transcription initiation. Analysis in vitro of the transcriptional properties of a series of N-terminally truncated σ70 derivates revealed a critical role for region 1.1 at several key stages of initiation. Deletion of the first 75 to 100 amino acids of σ70 (region 1.1) resulted in both a slow rate of transition from a closed promoter complex to a DNA-strand-separated open complex, as well as a reduced efficiency of transition from the open complex to a transcriptionally active open complex. These effects were partially reversed by addition of a polypeptide containing region 1.1 in trans. Therefore, region 1.1 not only modulates DNA binding but is important for efficient transcription initiation, once a closed complex has formed. A deletion of the first 133 amino acids which removes both regions 1.1 and 1.2 resulted in arrest of initiation at the earliest closed complex, suggesting that region 1.2 is required for open complex formation. Mutagenesis of region 1.1 uncovered a mechanistically important role for isoleucine at position 53 (I53). Substitution of I53 with alanine created a σ factor that associated with the core subunits to form holoenzyme, but the holoenzyme was severely deficient for promoter binding. The I53A phenotype was suppressed in vivo by truncation of five amino acids from the C-terminus of σ 70. These observations are consistent with a model in which σ 70I53A fails to undergo a critical conformational change upon association with the core subunits, which is needed to expose the DNA-binding domains and confer promoter recognition capability upon holoenzyme. To understand the basis of the autoinhibitory properties of the σ70 N-terminal domain, in the absence of core RNA polymerase, a preliminary physical assessment of the interdomain interactions within the σ70 subunit was launched. Results support a model in which N-terminal amino acids are in close proximity to residues in the C-terminus of the σ 70 polypeptide. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nar operon, which encodes the nitrate reductase in Escherichia coli, can be induced under anaerobic conditions without nitrate to a low level and with nitrate to a maximum level. The anaerobic formation of nitrate reductase is dependent upon the fnr gene product while the narL gene product is required for further induction by nitrate. The sequence was determined across the entire promoter and regulatory region of the nar operon. The translational start site of the first structural gene of the nar operon, narG gene, was established by identifying the nucleotide sequence for the first 20 N-terminal amino acid residues of the alpha subunit of nitrate reductase. The transcriptional start site and the level of the transcript was determined by S1 mapping procedure. One major transcript was identified which was initiated 50 base pair (bp) upstream from the translational start site of the first structural gene. The synthesis of the transcript was repressed aerobically, fully induced by nitrate anaerobically, and greatly reduced in a ${\rm Fnr\sp-}$ mutant. Deletions were created in the 5$\sp\prime$ nar regulatory sequence with either an intact nar operon or a nar::lacZ fusion. The expression of the plasmids with deletions were determined in a strain with wild type fnr and narL loci, a Fnr- mutant strain and a NarL- mutant strain. These experiments demonstrated that the $5\sp\prime$ limit of the nar operon lies at about $-210$ bp from the transcription start site. The region required for anaerobic induction by the fnr gene product is located around $-60$ bp. Two putative narL recognition sites were identified, one of which is around $-200$ and another immediately adjacent to the fnr recognition region. The deletion of the sequences around $-200$ rendered the remaining narL complex repressive and thus decreased the expression of nar operon, suggesting that the two potential narL sites interact with each other over a significant length of DNA. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prevalence and genetic relatedness were determined for third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec) detected in Swiss beef, veal, pork, and poultry retail meat. Samples from meat-packing plants (MPPs) processing 70% of the slaughtered animals in Switzerland were purchased at different intervals between April and June 2013 and analyzed. Sixty-nine 3GC-R-Ec isolates were obtained and characterized by microarray, PCR/DNA sequencing, Multi Locus Sequence Typing (MLST), and plasmid replicon typing. Plasmids of selected strains were transformed by electroporation into E. coli TOP10 cells and analyzed by plasmid MLST. The prevalence of 3GC-R-Ec was 73.3% in chicken and 2% in beef meat. No 3GC-R-Ec were found in pork and veal. Overall, the blaCTX-M-1 (79.4%), blaCMY-2 (17.6%), blaCMY-4 (1.5%), and blaSHV-12 (1.5%) β-lactamase genes were detected, as well as other genes conferring resistance to chloramphenicol (cmlA1-like), sulfonamides (sul), tetracycline (tet), and trimethoprim (dfrA). The 3GC-R-Ec from chicken meat often harbored virulence genes associated with avian pathogens. Plasmid incompatibility (Inc) groups IncI1, IncFIB, IncFII, and IncB/O were the most frequent. A high rate of clonality (e.g., ST1304, ST38, and ST93) among isolates from the same MPPs suggests that strains persist at the plant and spread to meat at the carcass-processing stage. Additionally, the presence of the blaCTX-M-1 gene on an IncI1 plasmid sequence type 3 (IncI1/pST3) in genetically diverse strains indicates interstrain spread of an epidemic plasmid. The blaCMY-2 and blaCMY-4 genes were located on IncB/O plasmids. This study represents the first comprehensive assessment of 3GC-R-Ec in meat in Switzerland. It demonstrates the need for monitoring contaminants and for the adaptation of the Hazard Analysis and Critical Control Point concept to avoid the spread of multidrug-resistant bacteria through the food chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new gene, sul3, which specifies a 263-amino-acid protein similar to a dihydropteroate synthase encoded by the 54-kb conjugative plasmid pVP440 from Escherichia coli was characterized. Expression of the cloned sul3 gene conferred resistance to sulfamethoxazole on E. coli. Two copies of the insertion element IS15Delta/26 flanked the region containing sul3. The sul3 gene was detected in one-third of the sulfonamide-resistant pathogenic E. coli isolates from pigs in Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mdt(A) gene, previously designated mef214, from Lactococcus lactis subsp. lactis plasmid pK214 encodes a protein [Mdt(A) (multiple drug transporter)] with 12 putative transmembrane segments (TMS) that contain typical motifs conserved among the efflux proteins of the major facilitator superfamily. However, it also has two C-motifs (conserved in the fifth TMS of the antiporters) and a putative ATP-binding site. Expression of the cloned mdt(A) gene decreased susceptibility to macrolides, lincosamides, streptogramins, and tetracyclines in L. lactis and Escherichia coli, but not in Enterococcus faecalis or in Staphylococcus aureus. Glucose-dependent efflux of erythromycin and tetracycline was demonstrated in L. lactis and in E. coli.