923 resultados para Dynamic storage allocation (Computer science)
Resumo:
In order to separate the effects of experience from other characteristics of word frequency (e.g., orthographic distinctiveness), computer science and psychology students rated their experience with computer science technical items and nontechnical items from a wide range of word frequencies prior to being tested for recognition memory of the rated items. For nontechnical items, there was a curvilinear relationship between recognition accuracy and word frequency for both groups of students. The usual superiority of low-frequency words was demonstrated and high-frequency words were recognized least well. For technical items, a similar curvilinear relationship was evident for the psychology students, but for the computer science students, recognition accuracy was inversely related to word frequency. The ratings data showed that subjective experience rather than background word frequency was the better predictor of recognition accuracy.
Resumo:
Nursing diagnoses associated with alterations of urinary elimination require different interventions, Nurses, who are not specialists, require support to diagnose and manage patients with disturbances of urine elimination. The aim of this study was to present a model based on fuzzy logic for differential diagnosis of alterations in urinary elimination, considering nursing diagnosis approved by the North American Nursing Diagnosis Association, 2001-2002. Fuzzy relations and the maximum-minimum composition approach were used to develop the system. The model performance was evaluated with 195 cases from the database of a previous study, resulting in 79.0% of total concordance and 19.5% of partial concordance, when compared with the panel of experts. Total discordance was observed in only three cases (1.5%). The agreement between model and experts was excellent (kappa = 0.98, P < .0001) or substantial (kappa = 0.69, P < .0001) when considering the overestimative accordance (accordance was considered when at least one diagnosis was equal) and the underestimative discordance (discordance was considered when at least one diagnosis was different), respectively. The model herein presented showed good performance and a simple theoretical structure, therefore demanding few computational resources.
Resumo:
Fuzzy Bayesian tests were performed to evaluate whether the mother`s seroprevalence and children`s seroconversion to measles vaccine could be considered as ""high"" or ""low"". The results of the tests were aggregated into a fuzzy rule-based model structure, which would allow an expert to influence the model results. The linguistic model was developed considering four input variables. As the model output, we obtain the recommended age-specific vaccine coverage. The inputs of the fuzzy rules are fuzzy sets and the outputs are constant functions, performing the simplest Takagi-Sugeno-Kang model. This fuzzy approach is compared to a classical one, where the classical Bayes test was performed. Although the fuzzy and classical performances were similar, the fuzzy approach was more detailed and revealed important differences. In addition to taking into account subjective information in the form of fuzzy hypotheses it can be intuitively grasped by the decision maker. Finally, we show that the Bayesian test of fuzzy hypotheses is an interesting approach from the theoretical point of view, in the sense that it combines two complementary areas of investigation, normally seen as competitive. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Objective: The aim of this article is to propose an integrated framework for extracting and describing patterns of disorders from medical images using a combination of linear discriminant analysis and active contour models. Methods: A multivariate statistical methodology was first used to identify the most discriminating hyperplane separating two groups of images (from healthy controls and patients with schizophrenia) contained in the input data. After this, the present work makes explicit the differences found by the multivariate statistical method by subtracting the discriminant models of controls and patients, weighted by the pooled variance between the two groups. A variational level-set technique was used to segment clusters of these differences. We obtain a label of each anatomical change using the Talairach atlas. Results: In this work all the data was analysed simultaneously rather than assuming a priori regions of interest. As a consequence of this, by using active contour models, we were able to obtain regions of interest that were emergent from the data. The results were evaluated using, as gold standard, well-known facts about the neuroanatomical changes related to schizophrenia. Most of the items in the gold standard was covered in our result set. Conclusions: We argue that such investigation provides a suitable framework for characterising the high complexity of magnetic resonance images in schizophrenia as the results obtained indicate a high sensitivity rate with respect to the gold standard. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose a method based on association rule-mining to enhance the diagnosis of medical images (mammograms). It combines low-level features automatically extracted from images and high-level knowledge from specialists to search for patterns. Our method analyzes medical images and automatically generates suggestions of diagnoses employing mining of association rules. The suggestions of diagnosis are used to accelerate the image analysis performed by specialists as well as to provide them an alternative to work on. The proposed method uses two new algorithms, PreSAGe and HiCARe. The PreSAGe algorithm combines, in a single step, feature selection and discretization, and reduces the mining complexity. Experiments performed on PreSAGe show that this algorithm is highly suitable to perform feature selection and discretization in medical images. HiCARe is a new associative classifier. The HiCARe algorithm has an important property that makes it unique: it assigns multiple keywords per image to suggest a diagnosis with high values of accuracy. Our method was applied to real datasets, and the results show high sensitivity (up to 95%) and accuracy (up to 92%), allowing us to claim that the use of association rules is a powerful means to assist in the diagnosing task.
Resumo:
At present, there is a variety of formalisms for modeling and analyzing the communication behavior of components. Due to a tremendous increase in size and complexity of embedded systems accompanied by shorter time to market cycles and cost reduction, so called behavioral type systems become more and more important. This chapter presents an overview and a taxonomy of behavioral types. The intentions of this taxonomy are to provide a guidance for software engineers and to form the basis for future research.
Resumo:
A matricial method to solve the decay chain differential equations system is presented. The quantity of each nuclide in the chain at a time t may be evaluated by analytical expressions obtained in a simple way using recurrence relations. This method may be applied to problems of radioactive buildup and decay and can be easily implemented computationally. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a systematic approach to proving temporal properties of arbitrary Z specifications. The approach involves (i) transforming the Z specification to an abstract temporal structure (or state transition system), (ii) applying a model checker to the temporal structure, (iii) determining whether the temporal structure is too abstract based on the model checking result and (iv) refining the temporal structure where necessary. The approach is based on existing work from the model checking literature, adapting it to Z.
Resumo:
Interval-valued versions of the max-flow min-cut theorem and Karp-Edmonds algorithm are developed and provide robustness estimates for flows in networks in an imprecise or uncertain environment. These results are extended to networks with fuzzy capacities and flows. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We establish existence results for solutions to three-point boundary value problems for nonlinear, second-order, ordinary differential equations with nonlinear boundary conditions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We establish existence of solutions for a finite difference approximation to y = f(x, y, y ') on [0, 1], subject to nonlinear two-point Sturm-Liouville boundary conditions of the form g(i)(y(i),y ' (i)) = 0, i = 0, 1, assuming S satisfies one-sided growth bounds with respect to y '. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Uncontrolled systems (x) over dot is an element of Ax, where A is a non-empty compact set of matrices, and controlled systems (x) over dot is an element of Ax + Bu are considered. Higher-order systems 0 is an element of Px - Du, where and are sets of differential polynomials, are also studied. It is shown that, under natural conditions commonly occurring in robust control theory, with some mild additional restrictions, asymptotic stability of differential inclusions is guaranteed. The main results are variants of small-gain theorems and the principal technique used is the Krasnosel'skii-Pokrovskii principle of absence of bounded solutions.
Resumo:
An important feature of some conceptual modelling grammars is the features they provide to allow database designers to show real-world things may or may not possess a particular attribute or relationship. In the entity-relationship model, for example, the fact that a thing may not possess an attribute can be represented by using a special symbol to indicate that the attribute is optional. Similarly, the fact that a thing may or may not be involved in a relationship can be represented by showing the minimum cardinality of the relationship as zero. Whether these practices should be followed, however, is a contentious issue. An alternative approach is to eliminate optional attributes and relationships from conceptual schema diagrams by using subtypes that have only mandatory attributes and relationships. In this paper, we first present a theory that led us to predict that optional attributes and relationships should be used in conceptual schema diagrams only when users of the diagrams require a surface-level understanding of the domain being represented by the diagrams. When users require a deep-level understanding, however, optional attributes and relationships should not be used because they undermine users' abilities to grasp important domain semantics. We describe three experiments which we then undertook to test our predictions. The results of the experiments support our predictions.
Resumo:
In the design of lattice domes, design engineers need expertise in areas such as configuration processing, nonlinear analysis, and optimization. These are extensive numerical, iterative, and lime-consuming processes that are prone to error without an integrated design tool. This article presents the application of a knowledge-based system in solving lattice-dome design problems. An operational prototype knowledge-based system, LADOME, has been developed by employing the combined knowledge representation approach, which uses rules, procedural methods, and an object-oriented blackboard concept. The system's objective is to assist engineers in lattice-dome design by integrating all design tasks into a single computer-aided environment with implementation of the knowledge-based system approach. For system verification, results from design examples are presented.