905 resultados para Durable goods


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormal expansion or depletion of particular lymphocyte subsets is associated with clinical manifestations such as HIV progression to AIDS and autoimmune disease. We sought to identify genetic predictors of lymphocyte levels and reasoned that these may play a role in immune-related diseases. We tested 2.3 million variants for association with five lymphocyte subsets, measured in 2538 individuals from the general population, including CD4+ T cells, CD8+ T cells, CD56+ natural killer (NK) cells, and the derived measure CD4:CD8 ratio. We identified two regions of strong association. The first was located in the major histocompatibility complex (MHC), with multiple SNPs strongly associated with CD4:CD8 ratio (rs2524054, p = 2.1 × 10−28). The second region was centered within a cluster of genes from the Schlafen family and was associated with NK cell levels (rs1838149, p = 6.1 × 10−14). The MHC association with CD4:CD8 replicated convincingly (p = 1.4 × 10−9) in an independent panel of 988 individuals. Conditional analyses indicate that there are two major independent quantitative trait loci (QTL) in the MHC region that regulate CD4:CD8 ratio: one is located in the class I cluster and influences CD8 levels, whereas the second is located in the class II cluster and regulates CD4 levels. Jointly, both QTL explained 8% of the variance in CD4:CD8 ratio. The class I variants are also strongly associated with durable host control of HIV, and class II variants are associated with type-1 diabetes, suggesting that genetic variation at the MHC may predispose one to immune-related diseases partly through disregulation of T cell homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gympie messmate is an important commercial wood products tree in Queensland that produces high quality, strong, extremely durable and attractive timber. Although only small volumes are harvested from native forests in Queensland, it has a well-established market, and is in demand nationally. Gympie messmate timber from native forest has been used for a range of construction, engineering, appearance products and round timbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Finland, barley, Hordeum vulgare L., covers 50 % of the total acreage devoted to cereal cultivation. The most common disease of barley in Finland is net blotch, a foliar disease caused by the ascomycete Pyrenophora teres Drechsler. Disease resistance based on plant genes is an environmentally friendly and economical way to manage plant diseases caused by biotic stresses. Development of a disease resistance breeding programme is dependent on knowledge of the pathogen. In addition to information on the epidemiology and virulence of a pathogen, knowledge on how the pathogen evolves and the nature of the risks that might arise in the future are essential issues that need to be taken into account to achieve the final breeding aims. The main objectives of this study were to establish reliable and efficient testing methods for Pyrenophora teres f. teres virulence screening, and to understand the role of virulence of P. teres f. teres in Finland from a disease resistance breeding point of view. The virulence of P. teres was studied by testing 239 Finnish P. teres f. teres isolates collected between 1994 2007 originating from 19 locations, and 200 P. teres progeny isolates originating from artificially produced P. teres matings. According to the results of this study, screening for P. teres f. teres isolates on barley seedlings under greenhouse conditions is a feasible and cost efficient method to describe the virulence spectrum of the pathogen. Inoculum concentration and the seedling leaf used to gauge virulence had significant effects. Barley grain size, morphological traits of P. teres isolates, spore production and growth rate on agar did not affect the expression of virulence. A common barley differential set to characterize the P. teres virulence was developed and is recommended to be used globally. The virulence spectrum of Finnish P. teres f. teres isolates collected in 1994-2007 was constant both within and between the years. The results indicated differences in the pathogen s aggressiveness and in barley genotypes resistance. However, differences in virulence were rarely significant. Unlike in laboratory conditions, no indications of changes in virulence caused by the sexual reproduction have been observed in Finnish barley fields. In Finland, durable net blotch resistance has been achieved by introducing resistance from other barley varieties using traditional crossing methods, including wide crossing, and testing the breeding material at early generations at several sites under natural infection pressure. Novel resistance is available, which is recommended to minimize the risk of selection of virulent isolates and breakdown of currently deployed resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spontaneous sequence changes and the selection of beneficial mutations are driving forces of gene diversification and key factors of evolution. In highly dynamic co-evolutionary processes such as plant-pathogen interactions, the plant's ability to rapidly adapt to newly emerging pathogens is paramount. The hexaploid wheat gene Lr34, which encodes an ATP-binding cassette (ABC) transporter, confers durable field resistance against four fungal diseases. Despite its extensive use in breeding and agriculture, no increase in virulence towards Lr34 has been described over the last century. The wheat genepool contains two predominant Lr34 alleles of which only one confers disease resistance. The two alleles, located on chromosome 7DS, differ by only two exon-polymorphisms. Putatively functional homoeologs and orthologs of Lr34 are found on the B-genome of wheat and in rice and sorghum, but not in maize, barley and Brachypodium. In this study we present a detailed haplotype analysis of homoeologous and orthologous Lr34 genes in genetically and geographically diverse selections of wheat, rice and sorghum accessions. We found that the resistant Lr34 haplotype is unique to the wheat D-genome and is not found in the B-genome of wheat or in rice and sorghum. Furthermore, we only found the susceptible Lr34 allele in a set of 252 Ae. tauschii genotypes, the progenitor of the wheat D-genome. These data provide compelling evidence that the Lr34 multi-pathogen resistance is the result of recent gene diversification occurring after the formation of hexaploid wheat about 8,000 years ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spring barley is the most important crop in Finland based on cultivated land area. Net blotch, a disease caused by Pyrenophora teres Drech., is the most damaging disease of barley in Finland. The pressure to improve the economics and efficiency of agriculture has increased the need for more efficient plant protection methods. Development of durable host-plant resistance to net blotch is a promising possibility. However, deployment of disease resistant crops could initiate selection pressure on the pathogen (P. teres) population. The aim of this study was to understand the population biology of P. teres and to estimate the evolutionary potential of P. teres under selective pressure following deployment of resistance genes and application of fungicides. The study included mainly Finnish P. teres isolates. Population samples from Russia and Australia were also included. Using AFLP markers substantial genotypic variation in P. teres populations was identified. Differences among isolates were least within Finnish fields and significantly higher in Krasnodar, Russia. Genetic differentiation was identified among populations from northern Europe and from Australia, and between the two forms P. teres f. teres (PTT, net form of net blotch) and P. teres f. maculata (PTM, spot form of net blotch) in Australia. Differentiation among populations was also identified based on virulence between Finnish and Russian populations, and based on prochloraz (fungicide) tolerance in the Häme region in Finland. Surprisingly only PTT was recovered from Finland and Russia although both forms were earlier equally common in Finland. The reason for the shift in occurrence of forms in Finland remained uncertain. Both forms were found within several fields in Australia. Sexual reproduction of P. teres was supported by recover of both mating types in equal ratio in those areas although the prevalence of sexual mating seems to be less in Finland than in Australia. Population from Krasnodar was an exception since only one mating type was found in there. Based on the substantial high genotypic variation in Krasnodar it was suggested go represent an old P. teres population, whereas the Australian samples were suggested to represent newer populations. In conclusion, P. teres populations are differentiated at several levels. Human assistance in dispersal of P. teres on infected barley seed is obvious and decreases the differentiation among populations. This can increase the plant protection problems caused by this pathogen. P. teres is capable of sexual reproduction in several areas but the prevalence varies. Based on these findings it is apparent that P. teres has the potential to pose more serious problems in barley cultivation if plant protection is neglected. Therefore, good agricultural practices, including crop rotation and the use of healthy seed, are recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spotted gum is an important commercial tree in Queensland that produces a high quality, hard, durable and attractive timber. Currently, spotted gum is the highest volume native hardwood harvested in Queensland and has been used for construction, engineering, appearance products and round timbers. Spotted gum timber has a well-established market, and is in demand both nationally and internationally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red mahogany produces a hard, durable and attractive timber. In the past, small quantities of timber harvested from native forest has been used in construction, engineering and for appearance products and round timbers. It has well-established national markets, particularly in Queensland and NSW. It is also known in the international market as it is grown in plantations in other tropical regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Western white gum produces a hard, heavy, durable and attractive timber that is potentially suitable for construction, appearance products and round timber products. It is no longer harvested from natural stands but is a productive plantation tree in Queensland. It is highly suitable for low rainfall areas in northern Australia and is frost and drought hardy, has good form and reasonable growth rates. It is generally unknown in either national or international markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genomic regions influencing resistance to powdery mildew [Blumeria graminis (DC.) E.O. Speer f. sp. hordei Em. Marchal] were detected in a doubled haploid (DH) barley (Hordeum vulgare L.) population derived from a cross between the breeding line ND24260 and cultivar Flagship when evaluated across four field environments in Australia and Uruguay. Significant quantitative trait loci (OIL) for resistance to B. graminis were detected on six of the seven chromosomes (1H, 2H, 3H, 4H, 5H, and 7H). A QTL with large effect donated by ND24260 mapped to the short arm of chromosome 1H (1 HS) conferring near immunity to B. graminis in Australia but was ineffective in Uruguay. Three OIL donated by Flagship contributed partial resistance to B. graminis and were detected in at least two environments. These OIL were mapped to chromosomes 3H, 4H, and 5H (5HS) accounting for up to 18.6, 3.4, and 8.8% phenotypic variation, respectively. The 5HS QTL contributed partial resistance to B. graminis in all field environments in both Australia and Uruguay and aligned with the genomic region of Rph20, a gene conferring adult plant resistance (APR) to leaf rust (Puccinia hordei Otth), which is found in some cultivars having Vada' or 'Emir' in their parentage. Selection for favorable marker haplotypes within the 3H, 4H, and 5H QTL regions can be performed even in the presence of single (major) gene resistance. Pyramiding such QTL may provide an effective and potentially durable form of resistance to B. graminis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stripe or yellow rust (YR) is a significant problem in wheat crops worldwide. The deployment of adult-plant resistance (APR) genes in wheat cultivars is considered a sustainable management strategy, as these genes confer partial resistance that is usually non-race specific. Screening for APR typically involves assessment of adult plants in the field, where expression may be influenced by environmental factors. We report a high-throughput screening method for YR APR that can be used to assess fixed lines or segregating populations grown under controlled environmental conditions (CEC). Inoculation of 3-week-old wheat plants from lines with known APR responses to YR, when grown under constant light and temperature, provided disease responses typical of adult plants. Two F-2 populations ('H45' x 'ST93' and 'Wyalkatchem' x 'ST93') segregating for APR were assessed under both CEC and field conditions. These populations showed similar variation in disease response and lines assessed in both environments attained similar rankings. Phenotypic screening using CEC and continuous light provides an opportunity to accelerate the development of new wheat cultivars with durable resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change is the single biggest environmental problem in the world at the moment. Although the effects are still not fully understood and there is considerable amount of uncertainty, many na-tions have decided to mitigate the change. On the societal level, a planner who tries to find an eco-nomically optimal solution to an environmental pollution problem seeks to reduce pollution from the sources where reductions are most cost-effective. This study aims to find out how effective the instruments of the agricultural policy are in the case of climate change mitigation in Finland. The theoretical base of this study is the neoclassical economic theory that is based on the assumption of a rational economic agent who maximizes his own utility. This theoretical base has been widened towards the direction clearly essential to the matter: the theory of environmental eco-nomics. Deeply relevant to this problem and central in the theory of environmental economics are the concepts of externalities and public goods. What are also relevant are the problems of global pollution and non-point-source pollution. Econometric modelling was the method that was applied to this study. The Finnish part of the AGMEMOD-model, covering the whole EU, was used for the estimation of the development of pollution. This model is a seemingly recursive, partially dynamic partial-equilibrium model that was constructed to predict the development of Finnish agricultural production of the most important products. For the study, I personally updated the model and also widened its scope in some relevant matters. Also, I devised a table that can calculate the emissions of greenhouse gases according to the rules set by the IPCC. With the model I investigated five alternative scenarios in comparison to the base-line scenario of Agenda 2000 agricultural policy. The alternative scenarios were: 1) the CAP reform of 2003, 2) free trade on agricultural commodities, 3) technological change, 4) banning the cultivation of organic soils and 5) the combination of the last three scenarios as the maximal achievement in reduction. The maximal achievement in the alternative scenario 5 was 1/3 of the level achieved on the base-line scenario. CAP reform caused only a minor reduction when com-pared to the base-line scenario. Instead, the free trade scenario and the scenario of technological change alone caused a significant reduction. The biggest single reduction was achieved by banning the cultivation of organic land. However, this was also the most questionable scenario to be real-ized, the reasons for this are further elaborated in the paper. The maximal reduction that can be achieved in the Finnish agricultural sector is about 11 % of the emission reduction that is needed to comply with the Kyoto protocol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key message “To find stable resistance using association mapping tools, QTL with major and minor effects on leaf rust reactions were identified in barley breeding lines by assessing seedlings and adult plants.” Abstract Three hundred and sixty (360) elite barley (Hordeum vulgare L.) breeding lines from the Northern Region Barley Breeding Program in Australia were genotyped with 3,244 polymorphic diversity arrays technology markers and the results used to map quantitative trait loci (QTL) conferring a reaction to leaf rust (Puccinia hordei Otth). The F3:5 (Stage 2) lines were derived or sourced from different geographic origins or hubs of international barley breeding ventures representing two breeding cycles (2009 and 2011 trials) and were evaluated across eight environments for infection type at both seedling and adult plant stages. Association mapping was performed using mean scores for disease reaction, accounting for family effects using the eigenvalues from a matrix of genotype correlations. In this study, 15 QTL were detected; 5 QTL co-located with catalogued leaf rust resistance genes (Rph1, Rph3/19, Rph8/14/15, Rph20, Rph21), 6 QTL aligned with previously reported genomic regions and 4 QTL (3 on chromosome 1H and 1 on 7H) were novel. The adult plant resistance gene Rph20 was identified across the majority of environments and pathotypes. The QTL detected in this study offer opportunities for breeding for more durable resistance to leaf rust through pyramiding multiple genomic regions via marker-assisted selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Agriculture is facing enormous challenges to feed a growing population in the face of rapidly evolving pests and pathogens. The rusts, in particular, are a major pathogen of cereal crops with the potential to cause large reductions in yield. Improving stable disease resistance is an on-going major and challenging focus for many plant breeding programs, due to the rapidly evolving nature of the pathogen. Sorghum is a major summer cereal crop that is also a host for a rust pathogen which occurs in almost all sorghum growing areas of the world, causing direct and indirect yield losses in sorghum worldwide, however knowledge about its genetic control is still limited. In order to further investigate this issue, QTL and association mapping methods were implemented to study rust resistance in three bi-parental populations and an association mapping set of elite breeding lines in different environments. Results: In total, 64 significant or highly significant QTL and 21 suggestive rust resistance QTL were identified representing 55 unique genomic regions. Comparisons across populations within the current study and with rust QTL identified previously in both sorghum and maize revealed a high degree of correspondence in QTL location. Negative phenotypic correlations were observed between rust, maturity and height, indicating a trend for both early maturing and shorter genotypes to be more susceptible to rust. Conclusions: The significant amount of QTL co-location across traits, in addition to the consistency in the direction of QTL allele effects, has provided evidence to support pleiotropic QTL action across rust, height, maturity and stay-green, supporting the role of carbon stress in susceptibility to rust. Classical rust resistance QTL regions that did not co-locate with height, maturity or stay-green QTL were found to be significantly enriched for the defence-related NBS-encoding gene family, in contrast to the lack of defence-related gene enrichment in multi-trait effect rust resistance QTL. The distinction of disease resistance QTL hot-spots, enriched with defence-related gene families from QTL which impact on development and partitioning, provides plant breeders with knowledge which will allow for fast-tracking varieties with both durable pathogen resistance and appropriate adaptive traits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myer Starr was born in Dmitrovka in the Ukraine, which was then part of Russia. As a child he was apprenticed to a tailor and later a bakery before he began work at a dry goods store at the age of 11. After his mother died, Starr and his younger brother crossed the border into Germany and then immigrated to the United States. Starr and his brother sailed on the "Kleist" into New York in February 1913. From there, they traveled to a sister's house in Malden, Massachusetts. Myer later married and had two sons, graduates of Harvard College and Tufts University.