884 resultados para Dunkl Kernel


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a reproducing kernel Hilbert space (H,〈.,.〉)(H,〈.,.〉) of real-valued functions and a suitable measure μμ over the source space D⊂RD⊂R, we decompose HH as the sum of a subspace of centered functions for μμ and its orthogonal in HH. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let us consider a large set of candidate parameter fields, such as hydraulic conductivity maps, on which we can run an accurate forward flow and transport simulation. We address the issue of rapidly identifying a subset of candidates whose response best match a reference response curve. In order to keep the number of calls to the accurate flow simulator computationally tractable, a recent distance-based approach relying on fast proxy simulations is revisited, and turned into a non-stationary kriging method where the covariance kernel is obtained by combining a classical kernel with the proxy. Once the accurate simulator has been run for an initial subset of parameter fields and a kriging metamodel has been inferred, the predictive distributions of misfits for the remaining parameter fields can be used as a guide to select candidate parameter fields in a sequential way. The proposed algorithm, Proxy-based Kriging for Sequential Inversion (ProKSI), relies on a variant of the Expected Improvement, a popular criterion for kriging-based global optimization. A statistical benchmark of ProKSI’s performances illustrates the efficiency and the robustness of the approach when using different kinds of proxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the context of expensive numerical experiments, a promising solution for alleviating the computational costs consists of using partially converged simulations instead of exact solutions. The gain in computational time is at the price of precision in the response. This work addresses the issue of fitting a Gaussian process model to partially converged simulation data for further use in prediction. The main challenge consists of the adequate approximation of the error due to partial convergence, which is correlated in both design variables and time directions. Here, we propose fitting a Gaussian process in the joint space of design parameters and computational time. The model is constructed by building a nonstationary covariance kernel that reflects accurately the actual structure of the error. Practical solutions are proposed for solving parameter estimation issues associated with the proposed model. The method is applied to a computational fluid dynamics test case and shows significant improvement in prediction compared to a classical kriging model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stochastic models for three-dimensional particles have many applications in applied sciences. Lévy–based particle models are a flexible approach to particle modelling. The structure of the random particles is given by a kernel smoothing of a Lévy basis. The models are easy to simulate but statistical inference procedures have not yet received much attention in the literature. The kernel is not always identifiable and we suggest one approach to remedy this problem. We propose a method to draw inference about the kernel from data often used in local stereology and study the performance of our approach in a simulation study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Clear examples of ecological speciation exist, often involving divergence in trophic morphology. However, substantial variation also exists in how far the ecological speciation process proceeds, potentially linked to the number of ecological axes, traits, or genes subject to divergent selection. In addition, recent studies highlight how differentiation might occur between the sexes, rather than between populations. We examine variation in trophic morphology in two host-plant ecotypes of walking-stick insects (Timema cristinae), known to have diverged in morphological traits related to crypsis and predator avoidance, and to have reached an intermediate point in the ecological speciation process. Here we test how host plant use, sex, and rearing environment affect variation in trophic morphology in this species using traditional multivariate, novel kernel density based and Bayesian morphometric analyses. Results: Contrary to expectations, we find limited host-associated divergence in mandible shape. Instead, the main predictor of shape variation is sex, with secondary roles of population of origin and rearing environment. Conclusion: Our results show that trophic morphology does not strongly contribute to host-adapted ecotype divergence in T. cristinae and that traits can respond to complex selection regimes by diverging along different intraspecific lines, thereby impeding progress toward speciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discrepancies in finite-element model predictions of bone strength may be attributed to the simplified modeling of bone as an isotropic structure due to the resolution limitations of clinical-level Computed Tomography (CT) data. The aim of this study is to calculate the preferential orientations of bone (the principal directions) and the extent to which bone is deposited more in one direction compared to another (degree of anisotropy). Using 100 femoral trabecular samples, the principal directions and degree of anisotropy were calculated with a Gradient Structure Tensor (GST) and a Sobel Structure Tensor (SST) using clinical-level CT. The results were compared against those calculated with the gold standard Mean-Intercept-Length (MIL) fabric tensor using micro-CT. There was no significant difference between the GST and SST in the calculation of the main principal direction (median error=28°), and the error was inversely correlated to the degree of transverse isotropy (r=−0.34, p<0.01). The degree of anisotropy measured using the structure tensors was weakly correlated with the MIL-based measurements (r=0.2, p<0.001). Combining the principal directions with the degree of anisotropy resulted in a significant increase in the correlation of the tensor distributions (r=0.79, p<0.001). Both structure tensors were robust against simulated noise, kernel sizes, and bone volume fraction. We recommend the use of the GST because of its computational efficiency and ease of implementation. This methodology has the promise to predict the structural anisotropy of bone in areas with a high degree of anisotropy, and may improve the in vivo characterization of bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear morphometry (NM) uses image analysis to measure features of the cell nucleus which are classified as: bulk properties, shape or form, and DNA distribution. Studies have used these measurements as diagnostic and prognostic indicators of disease with inconclusive results. The distributional properties of these variables have not been systematically investigated although much of the medical data exhibit nonnormal distributions. Measurements are done on several hundred cells per patient so summary measurements reflecting the underlying distribution are needed.^ Distributional characteristics of 34 NM variables from prostate cancer cells were investigated using graphical and analytical techniques. Cells per sample ranged from 52 to 458. A small sample of patients with benign prostatic hyperplasia (BPH), representing non-cancer cells, was used for general comparison with the cancer cells.^ Data transformations such as log, square root and 1/x did not yield normality as measured by the Shapiro-Wilks test for normality. A modulus transformation, used for distributions having abnormal kurtosis values, also did not produce normality.^ Kernel density histograms of the 34 variables exhibited non-normality and 18 variables also exhibited bimodality. A bimodality coefficient was calculated and 3 variables: DNA concentration, shape and elongation, showed the strongest evidence of bimodality and were studied further.^ Two analytical approaches were used to obtain a summary measure for each variable for each patient: cluster analysis to determine significant clusters and a mixture model analysis using a two component model having a Gaussian distribution with equal variances. The mixture component parameters were used to bootstrap the log likelihood ratio to determine the significant number of components, 1 or 2. These summary measures were used as predictors of disease severity in several proportional odds logistic regression models. The disease severity scale had 5 levels and was constructed of 3 components: extracapsulary penetration (ECP), lymph node involvement (LN+) and seminal vesicle involvement (SV+) which represent surrogate measures of prognosis. The summary measures were not strong predictors of disease severity. There was some indication from the mixture model results that there were changes in mean levels and proportions of the components in the lower severity levels. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An overview is given of the lessons learned from the introduction of multi-threading using OpenMP in tmLQCD. In particular, programming style, performance measurements, cache misses, scaling, thread distribution for hybrid codes, race conditions, the overlapping of communication and computation and the measurement and reduction of certain overheads are discussed. Performance measurements and sampling profiles are given for different implementations of the hopping matrix computational kernel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After reviewing how simulations employing classical lattice gauge theory permit to test a conjectured Euclideanization property of a light-cone Wilson loop in a thermal non-Abelian plasma, we show how Euclidean data can in turn be used to estimate the transverse collision kernel, C(k⊥), characterizing the broadening of a high-energy jet. First results, based on data produced recently by Panero et al, suggest that C(k⊥) is enhanced over the known NLO result in a soft regime k⊥ < a few T. The shape of k3⊥ C(k⊥) is consistent with a Gaussian at small k⊥.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seed production, seed dispersal, and seedling recruitment are integral to forest dynamics, especially in masting species. Often these are studied separately, yet scarcely ever for species with ballistic dispersal even though this mode of dispersal is common in legume trees of tropical African rain forests. Here, we studied two dominant main-canopy tree species, Microberlinia bisulcata and Tetraberlinia bifoliolata (Caesalpinioideae), in 25 ha of primary rain forest at Korup, Cameroon, during two successive masting events (2007/2010). In the vicinity of c. 100 and 130 trees of each species, 476/580 traps caught dispersed seeds and beneath their crowns c. 57,000 pod valves per species were inspected to estimate tree-level fecundity. Seed production of trees increased non-linearly and asymptotically with increasing stem diameters. It was unequal within the two species’ populations, and differed strongly between years to foster both spatial and temporal patchiness in seed rain. The M. bisulcata trees could begin seeding at 42–44 cm diameter: at a much larger size than could T. bifoliolata (25 cm). Nevertheless, per capita life-time reproductive capacity was c. five times greater in M. bisulcata than T. bifoliolata owing to former’s larger adult stature, lower mortality rate (despite a shorter life-time) and smaller seed mass. The two species displayed strong differences in their dispersal capabilities. Inverse modelling (IM) revealed that dispersal of M. bisulcata was best described by a lognormal kernel. Most seeds landed at 10–15 m from stems, with 1% of them going beyond 80 m (<100 m). The direct estimates of fecundity significantly improved the models fitted. The lognormal also described well the seedling recruitment distribution of this species in 121 ground plots. By contrast, the lower intensity of masting and more limited dispersal of the heavier-seeded T. bifoliolata prevented reliable IM. For this species, seed density as function of distance to traps suggested a maximum dispersal distance of 40–50 m, and a correspondingly more aggregated seedling recruitment pattern ensued than for M. bisulcata. From this integrated field study, we conclude that the reproductive traits of M. bisulcata give it a considerable advantage over T. bifoliolata by better dispersing more seeds per capita to reach more suitable establishment sites, and combined with other key traits they explain its local dominance in the forest. Understanding the linkages between size at onset of maturity, individual fecundity, and dispersal capability can better inform the life-history strategies, and hence management, of co-occurring tree species in tropical forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a generalized framework for gradient-domain Metropolis rendering, and introduce three techniques to reduce sampling artifacts and variance. The first one is a heuristic weighting strategy that combines several sampling techniques to avoid outliers. The second one is an improved mapping to generate offset paths required for computing gradients. Here we leverage the properties of manifold walks in path space to cancel out singularities. Finally, the third technique introduces generalized screen space gradient kernels. This approach aligns the gradient kernels with image structures such as texture edges and geometric discontinuities to obtain sparser gradients than with the conventional gradient kernel. We implement our framework on top of an existing Metropolis sampler, and we demonstrate significant improvements in visual and numerical quality of our results compared to previous work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES In this phantom CT study, we investigated whether images reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) with reduced tube voltage and current have equivalent quality. We evaluated the effects of different acquisition and reconstruction parameter settings on image quality and radiation doses. Additionally, patient CT studies were evaluated to confirm our phantom results. METHODS Helical and axial 256 multi-slice computed tomography scans of the phantom (Catphan(®)) were performed with varying tube voltages (80-140kV) and currents (30-200mAs). 198 phantom data sets were reconstructed applying FBP and IR with increasing iterations, and soft and sharp kernels. Further, 25 chest and abdomen CT scans, performed with high and low exposure per patient, were reconstructed with IR and FBP. Two independent observers evaluated image quality and radiation doses of both phantom and patient scans. RESULTS In phantom scans, noise reduction was significantly improved using IR with increasing iterations, independent from tissue, scan-mode, tube-voltage, current, and kernel. IR did not affect high-contrast resolution. Low-contrast resolution was also not negatively affected, but improved in scans with doses <5mGy, although object detectability generally decreased with the lowering of exposure. At comparable image quality levels, CTDIvol was reduced by 26-50% using IR. In patients, applying IR vs. FBP resulted in good to excellent image quality, while tube voltage and current settings could be significantly decreased. CONCLUSIONS Our phantom experiments demonstrate that image quality levels of FBP reconstructions can also be achieved at lower tube voltages and tube currents when applying IR. Our findings could be confirmed in patients revealing the potential of IR to significantly reduce CT radiation doses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. MATERIALS AND METHODS 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. RESULTS Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. CONCLUSION The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE The purpose of this study was to investigate the feasibility of microdose CT using a comparable dose as for conventional chest radiographs in two planes including dual-energy subtraction for lung nodule assessment. MATERIALS AND METHODS We investigated 65 chest phantoms with 141 lung nodules, using an anthropomorphic chest phantom with artificial lung nodules. Microdose CT parameters were 80 kV and 6 mAs, with pitch of 2.2. Iterative reconstruction algorithms and an integrated circuit detector system (Stellar, Siemens Healthcare) were applied for maximum dose reduction. Maximum intensity projections (MIPs) were reconstructed. Chest radiographs were acquired in two projections with bone suppression. Four blinded radiologists interpreted the images in random order. RESULTS A soft-tissue CT kernel (I30f) delivered better sensitivities in a pilot study than a hard kernel (I70f), with respective mean (SD) sensitivities of 91.1% ± 2.2% versus 85.6% ± 5.6% (p = 0.041). Nodule size was measured accurately for all kernels. Mean clustered nodule sensitivity with chest radiography was 45.7% ± 8.1% (with bone suppression, 46.1% ± 8%; p = 0.94); for microdose CT, nodule sensitivity was 83.6% ± 9% without MIP (with additional MIP, 92.5% ± 6%; p < 10(-3)). Individual sensitivities of microdose CT for readers 1, 2, 3, and 4 were 84.3%, 90.7%, 68.6%, and 45.0%, respectively. Sensitivities with chest radiography for readers 1, 2, 3, and 4 were 42.9%, 58.6%, 36.4%, and 90.7%, respectively. In the per-phantom analysis, respective sensitivities of microdose CT versus chest radiography were 96.2% and 75% (p < 10(-6)). The effective dose for chest radiography including dual-energy subtraction was 0.242 mSv; for microdose CT, the applied dose was 0.1323 mSv. CONCLUSION Microdose CT is better than the combination of chest radiography and dual-energy subtraction for the detection of solid nodules between 5 and 12 mm at a lower dose level of 0.13 mSv. Soft-tissue kernels allow better sensitivities. These preliminary results indicate that microdose CT has the potential to replace conventional chest radiography for lung nodule detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the problem of blind deconvolution. Our analysis is based on the algorithm of Chan and Wong [2] which popularized the use of sparse gradient priors via total variation. We use this algorithm because many methods in the literature are essentially adaptations of this framework. Such algorithm is an iterative alternating energy minimization where at each step either the sharp image or the blur function are reconstructed. Recent work of Levin et al. [14] showed that any algorithm that tries to minimize that same energy would fail, as the desired solution has a higher energy than the no-blur solution, where the sharp image is the blurry input and the blur is a Dirac delta. However, experimentally one can observe that Chan and Wong's algorithm converges to the desired solution even when initialized with the no-blur one. We provide both analysis and experiments to resolve this paradoxical conundrum. We find that both claims are right. The key to understanding how this is possible lies in the details of Chan and Wong's implementation and in how seemingly harmless choices result in dramatic effects. Our analysis reveals that the delayed scaling (normalization) in the iterative step of the blur kernel is fundamental to the convergence of the algorithm. This then results in a procedure that eludes the no-blur solution, despite it being a global minimum of the original energy. We introduce an adaptation of this algorithm and show that, in spite of its extreme simplicity, it is very robust and achieves a performance comparable to the state of the art.