995 resultados para Dsc-photovisual


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review of polymer cure models used in microelectronics packaging applications reveals no clear consensus of the chemical rate constants for the cure reactions, or even of an effective model. The problem lies in the contrast between the actual cure process, which involves a sequence of distinct chemical reactions, and the models, which typically assume only one, (or two with some restrictions on the independence of their characteristic constants.) The standard techniques to determine the model parameters are based on differential scanning calorimetry (DSC), which cannot distinguish between the reactions, and hence yields results useful only under the same conditions, which completely misses the point of modeling. The obvious solution is for manufacturers to provide the modeling parameters, but failing that, an alternative experimental technique is required to determine individual reaction parameters, e.g. Fourier transform infra-red spectroscopy (FTIR).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silica nanoparticles (MSNs) with a highly ordered mesoporous structures (103A) with cubic Im3 m have been synthesized using triblock copolymers with high poly(alkylene oxide) (EO) segments in acid media. The produced nanoparticles displayed large specific surface area (approximately 765 cm(2)/g) with an average particles size of 120 nm. The loading efficiency was assessed by incorporating three major antiepileptic active substances via passive loading and it was found to varying from 17 to 25%. The state of the adsorbed active agents was further analyzed using differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Dissolution studies revealed rapid release profiles within the first 3 h. The viability of 3T3 endothelial cells was not affected in the presence of MSNs indicating negligible cytotoxicity. 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subambient behavior of aqueous mannitol solutions is of considerable relevance to the preparation of freeze dried formulations. In this investigation the properties of 3% w/v mannitol solutions were investigated using differential scanning calorimetry (DSC), cold stage microscopy (CSM), and X-ray diffraction (XRD) to identify the thermal transitions and structural transformations undergone by this system. It was found that on cooling from ambient the system formed ice at circa -20°C while a further exotherm was seen at approximately -30°C. Upon reheating an endotherm was seen at circa -30°C followed immediately by an exotherm at circa -25°C. Temperature cycling indicated that the thermal transitions observed upon reheating were not reversible. Modulated temperature DSC (MTDSC) indicated that the transitions observed upon reheating corresponded to a glass transition immediately followed by recrystallization, XRD data showed that recrystallization was into the ß form. Annealing at -35°C for 40 min prior to cooling and reheating resulted in a maximum enthalpy being observed for the reheating exotherm. It is concluded that on cooling 3% w/v aqueous mannitol solutions an amorphous phase is formed that subsequently recrystallises into the ß form. The study has also shown that DSC, CSM, and XRD are useful complementary techniques for the study of frozen systems

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling–transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson–Mehl–Avrami (JMA) theory and by applying the "concept of additivity." The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using fluorescence microscopy, DSC and DMTA we have explored blends of a bitumen with a styrene-butadiene-styrene (SBS) block copolymer, and with blends of the bitumen with SBS and one or two homopolymers - a polystyrene and a poly(cis-butadiene). The SBS polymer was progressively replaced with quantities of the homopolymers both together in the proportions found in the block copolymer and then by each homopolymer separately. At low temperatures the blends are all softer than the bitumen itself, so the polymers plasticise the bitumen-rich phase, and above 50°C the blends' stiffness (E') falls below a plateau only when a critical proportion of the block copolymer has been replaced with the two homopolymers: this supports the idea of an extensive network created by the polystyrene-rich spherical microphases that is effective even when the polystyrene microphases have melted. In one polymer blend the stiffness rose as the temperature was raised above 100°C, suggesting the development of a mesophase based upon polybutadiene plus asphaltenes, in another E' was enhanced and E" remained constant as the temperature rose above 70°C, perhaps for a similar reason; in some loss process appeared and the stiffness fell as temperature rose; but in others a good part of the SBS was replaced by either polystyrene or polybutadiene without changing the appearance of a rubbery plateau, that is, without a diminution of the mechanical properties of the soft matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing appropriate treatments for easel paintings can be complex, as many works are composed of various materials that respond in different ways. When selecting a filling material for these artworks, several properties are investigated including: the need for the infill to react to environmental conditions in a similar manner as the original material; the need for the infill to have good handling properties, adhesion to the original support, and cohesion within the filling material; the ability for the infill to withstand the stress of the surrounding material and; be as flexible as the original material to not cause further damage. Also, changes in colour or mechanical properties should not occur as part of the ageing process. Studies are needed on acrylic-based materials used as infills in conservation treatments. This research examines some of the chemical, physical, and optical changes of eleven filling materials before and after ageing, with the aim to evaluate the overall appropriateness of these materials as infills for easel paintings. The materials examined were three rabbit skin glue (RSG) gessoes, and seven commercially prepared acrylic materials, all easily acquired in North America. Chemical analysis was carried out with Fourier transform infrared (FTIR) spectroscopy and X-ray fluorescence (XRF), pyrolysis gas chromatography-mass spectroscopy (Py-GC/MS), and differential scanning calorimetry (DSC). Overall the compositions of the various materials examined were found to be in agreement with the available literature and previous research. This study also examined characteristics of these materials not described in previous works and, additionally, presented the compositions and behaviour of several commonly used materials with little literature description. After application of an ageing regimen, most naturally aged and artificially aged samples displayed small changes in gloss, colour, thickness, and diffusive behaviour; however, to evaluate these materials fully mechanical testing and environmental studies should be carried out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the use of co-melt fluidised bed granulation for the agglomeration of model pharmaceutical powders, namely, lactose mono-hydrate, PEG 10000, poly-vinyl pyrolidone and ibuprofen as a model drug. Granulation within the co-melt system was found to follow a nucleationâ??steady growthâ??coating regime profile. Using high molecular weight PEG binder, the granulation mechanism and thus the extent of granulation was found to be significantly influenced by binder viscosity. The compression properties of the granulate within the hot fluidised bed were correlated using a novel high temperature experimental procedure. It was found that the fracture stress and fractural modulus of the materials under hot processing conditions were orders of magnitude lower than those measured under ambient conditions. A range of particle velocities within the granulator were considered based on theoretical models. After an initial period of nucleation, the Stokes deformation number analysis indicated that only velocities within the high shear region of the fluidised bed were sufficient to promote significant granule deformation and therefore, coalescence. The data also indicated that larger granules de-fluidised preventing agglomeration by coalescence. Furthermore, experimental data indicated that dissipation of the viscous molten binder to the surface was the most important factor in the latter stages of the granulation process. From a pharmaceutical perspective the inclusion of the model drug, ibuprofen, combined with PVP in the co-melt process proved to be highly significant. It was found that using DSC analysis on the formulations that the decrease in the heat of fusion associated with the melting of ibuprofen within the FHMG systems may be attributed to interaction between PVP and ibuprofen through inter-molecular hydrogen bonding. This interaction decreases the crystallinity of ibuprofen and facilitates solubilisation and bioavailability within the solid matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this highly novel study was to use hot-melt extrusion technology as an alternative process to enteric coating. In so doing, oral dosage forms displaying enteric properties may be produced in a continuous, rapid process, providing significant advantages over traditional pharmaceutical coating technology. Eudragit (R) L100-55, an enteric polymer, was pre-plasticized with triethyl citrate (TEC) and citric acid and subsequently dry-mixed with 5-aminosalicylic acid, a model active pharmaceutical ingredient (API), and an optional gelling agent (PVP (R) K30 or Carbopol (R) 971P). Powder blends were hot-melt extruded as cylinders, cut into tablets and characterised using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dissolution testing conducted in both pH 1.2 and pH 6.8 buffers. Increasing the concentration of TEC significantly lowered the glass transition temperature (T,) of Eudragit (R) L100-55 and reduced temperatures necessary for extrusion as well as the die pressure. Moreover, citric acid (17% w/w) was shown to act as a solid-state plasticizer. HME tablets showed excellent gastro-resistance, whereas milled extrudates compressed into tablets released more than 10% w/w of the API in acidic media. Drug release from HME tablets was dependent upon the concentration of TEC, the presence of citric acid, PVP K30, and Carbopol (R) 971P in the matrix, and pH of the dissolution media. The inclusion of an optional gelling agent significantly reduced the erosion of the matrix and drug release rate at pH 6.8; however, the enteric properties of the matrix were lost due to the formation of channels within the tablet. Consequently this work is both timely and highly innovative and identifies for the first time a method of producing an enteric matrix tablet using a continuous hot-melt extrusion process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a series of hydrogels was synthesized by free radical polymerization, namely poly(2-(hydroxyethyl) methacrylate) (pHEMA), poly(4-(hydroxybutyl)methacrylate) (pHBMA), poly(6-(hydroxyhexyl)methacrylate) (pHHMA), and copolymers composed of N-isopropylacrylamide (NIPAA), methacrylic acid (MA), NIPAA, and the above monomers. The surface, mechanical, and swelling properties (at 20 and 37 degrees C, pH 6) of the polymers were determined using dynamic contact angle analysis, tensile analysis, and thermogravimetry, respectively. The T-g and lower critical solution temperatures (LCST) were determined using modulated DSC and oscillatory rheometry, respectively. Drug loading of the hydrogels with chlorhexidine diacetate was performed by immersion in a drug solution at 20 degrees C (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MTDSC is a software modification of the traditional DSC thermal analysis technique that allows more accurate determination of the glass transition as well as measurement of the endothermic relaxation that often accompanies the transition. The glass transition is an essential parameterboth of the original frozen solution and of the end product. Measurement of endothermic relaxation allows the determination of molecularrelaxation times in the freeze-dried product that may be useful in predicting the effect of formulation variables and storage conditions on physical stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of tacticity on the conformational properties of poly(olefin sulfone)s was studied. Tactic polymers, prepared from racemic thiirane monomers using chiral inititators were compared with atactic polymers prepared by free radical co-polymerisation of the 1-olefin with sulfur dioxide. Analysis of the XRD patterns showed that the tactic polymers formed more ordered structures in the bulk with longer layer spacings, consistent with a model in which their side chains meet at the tips in contrast with the atactic polymers whose side chains interdigitate. 13C MAS nmr experiments suggest that as tacticity increases so too does the proportion of C-S bonds in the gauche conformation, however the proportion of S-C bonds in the trans conformation falls, in contrast to a reported molecular mechanics study. Finally, DSC measurements on the polymers with longer side chains showed the presence of two endotherms on heating, illustrating definite liquid crystalline behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the different mix design in comparison with traditional concrete and the absence of vibration, different durability characteristics might be expected for self-compacting concrete. The stateof- the-art report, prepared by RILEM Technical Committee TC 205-DSC focuses on the Durability of SCC, by first gathering the available information concerning pore structure, air-void system and transport mechanisms. The available durability results are studied and summarised keeping in mind the fundamental mechanisms and driving forces. All relevant durability issues are considered, like carbonation, chloride penetration, frost resistance, ASR, sulphate attack, thaumasite formation, fire resistance, etc... It is not the intention to give a review on these durability aspects for concrete in general. The aim however is to point at the specifics related to the use of SCC, e.g. due to the addition of a large amount of limestone filler, etc... This paper summarizes the main conclusions of the State-of-the-Art Report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-eight novel salts with tetramethyl-, tetraethyl-, and tetrabutylammonium and 1-butyl-3-methylimidazolium cations paired with 3,5-dinitro-1,2,4-triazolate, 4-nitro-1,2,3-triazolate, 2,4-dinitroimidazolate, 4,5-dinitroimidazolate, 4,5-dicyanoimidazolate, 4-nitroimidazolate, and tetrazolate anions have been prepared and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and single-crystal Xray crystallography. The effects of cation and anion type and structure on the physicochemical properties of the resulting salts, including several ionic liquids, have been examined and discussed. Ionic liquids (defined as having m.p. <100 degrees C) were obtained with all combinations of the 1-butyl-3-methylimidazolium cation ([C(4)mim](+)) and the heterocyclic azolate anions studied, and with several combinations of tetraethyl or tetrabutylammonium cations and the azolate anions. The [C(4)mim](+) azolates were liquid at room temperature exhibiting large liquid ranges and forming glasses on cooling with glasstransition temperatures in the range of -53 to -82 degrees C (except for the 3,5-dinitro-1,2,4-triazolate salt with m.p. 33 degrees C). Six crystal structures of the corresponding tetraalkylammonium salts were determined and the effects of changes to the cations and anions on the packing of the structure have been investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twelve novel 1,3-dialkylimidazolium salts containing strongly electron-withdrawing nitro-and cyano-functionalities directly appended to the cationic heterocyclic rings have been synthesized; the influences of the substituents on both formation and thermal properties of the resultant ionic liquids have been determined by DSC, TGA, and single crystal X-ray diffraction, showing that an electron-withdrawing nitro-substituent can be successfully appended and has a similar influence on the melting behaviour as that of corresponding methyl group substitution. Synthesis of di-, or trinitro-substituted 1,3-dialkylimidazolium cations was unsuccessful due to the resistance of dinitro-substituted imidazoles to undergo either N-alkylation or protonation, while 1-alkyl- 4,5-dicyanoimidazoles were successfully alkylated to obtain 1,3-dialkyl-4,5-dicyanoimidazolium salts. Five crystal structures ( one of each cation type) show that, in the solid state, the NO2-group has little significant effect, beyond the steric contribution, on the crystal packing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semi-solid forming processes such as thermoforming and injection blow moulding are used to make much of today’s packaging. As for most packaging there is a drive to reduce product weight and improve properties such as barrier performance. Polymer nanocomposites offer the possibility of increased modulus
(and hence potential product light weighting) as well as improved barrier properties and are the subject of much research attention. In this particular study, polypropylene–clay nanocomposite sheets produced via biaxial deformation are investigated and the structure of the nanocomposites is quantitatively determined in order to gain a better understanding of the influence of the composite structure on mechanical properties. Compression moulded sheets of polypropylene and polypropylene/Cloisite 15A nanocomposite (5 wt.%) were biaxially stretched to different stretching ratios, and then the structure of
the nanocomposite was examined using XRD and TEM techniques. Different stretching ratios produced different degrees of exfoliation and orientation of the clay tactoids. The sheet properties were then investigated using DSC, DMTA, and tensile tests .It was found that regardless of the degree of exfoliation or
orientation, the addition of clay has no effect on percentage crystallinity or melting temperature, but it has an effect on the crystallization temperature and on the crystal size distribution. DMTA and tensile tests show that both the degree of exfoliation and the degree of orientation positively correlate with the dynamic mechanical properties and the tensile properties of the sheet.