932 resultados para Dov Baer, of Mezhirech, d. 1772
Resumo:
The differential cross sections of F-17 and O-17 elastic scattering products on Pb-208 have been measured at the Radioactive Ion Beam Line at Lanzhou (RIBLL). Two angular dispersion plots of ln(d sigma/d theta) versus theta 2 are obtained from the angular distribution of the elastic scattering differential cross sections. The angular dispersion plot exhibits a clear turning point for F-17 in the range of small scattering angles 6 degrees-20 degrees due to its exotic structure, but for O-17, the turning point is not observed in the same angular range. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data supports the above conclusion that there is an exotic behaviour of the angular dispersion plot of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the turning point of the angular dispersion plot appears at small angle for weakly bound nuclei with halo or skin structure, and can be used as a new probe to investigate the halo and skin phenomena of weakly bound nuclei.
Resumo:
In this work, we systematically study the interaction of D* and nucleon, which is stimulated by the observation of Lambda(c)(2940)(+) close to the threshold of D* p. Our numerical result obtained by the dynamical investigation indicates the existence of the D* N systems with J(P) = 1/2(+/-), 3/2(+/-), which not only provides valuable information to understand the underlying structure of Lambda(c)(2940)(+) but also improves our knowledge of the interaction of D* and nucleon. Additionally, the bottom partners of the D* N systems are predicted, which might be as one of the tasks in LHCb experiment.
Resumo:
We demonstrate an approach for realizing colour-controllable light emission from top-emitting organic light-emitting diodes (TEOLEDs) by utilizing exterior multilayer films overlaid on them. The emissive colour varies from blue to red for the TEOLED with green tris(8-quinolinolato) aluminium as the emissive layer by tuning the exterior multilayer films. The theoretical simulation of the electroluminescence for the colour tunable TEOLEDs is demonstrated and accords well with experimental results. The advantage of this approach is that the optical and electrical characteristics of the TEOLED can be controlled individually and hence provides the feasibility to realize a full-colour display by using white TEOLEDs.
Resumo:
LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. The XRD results reveal that the fully crystalline pure LaAlO3 Phase can be obtained at 800 degrees C. The FE-SEM image indicates that the phosphor samples are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light (230 nm) and low-voltage electron beams (1-3 kV), the LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors show the characteristic emissions of Tb3+ (D-1(2)-> H-3(6,4),F-3(4) transitions) and Tm3+ (D-5(3,4)-> F-7(6,5,4,3) transitions) respectively. The CL of the LaAlO3:Tm3+ phosphors have high color purity and comparable intensity to the Y2SiO5:Ce3+ commercial product, and the CL colors of Tb3+-doped LaAlO3 phosphors can be tuned from blue to green by changing the doping concentration of Tb3+ to some extent.
Resumo:
The thermoluminescence (TL) properties of Ce3+ doped NaSr4(BO3)(3) phosphor under the beta-ray irradiation were reported. The polycrystalline sample was synthesized by high temperature solid-state reaction. The TL glow curve of NaSr4(BO3)(3):Ce3+ phosphor was composed of only one peak. TL kinetic parameters of NaSr4(BO3)(3):Ce3+ were deduced by the peak shape method, the activation energy (E) was 0.590 eV and the frequency factor was 1.008x10(6) s(-1). TL dose response was linear in the range of measurement. The 3-dimensional (3D) TL emission spectrum was also recorded, the emission spectrum consisted of two bands located at 441 and 479 nm respectively, corresponding to the characteristic 4f(0)5d(1)-> F-2((5/2,7/2)) transitions of the Ce3+ ion. The fading behavior of the NaSr4(BO3)(3):Ce3+ phosphor over a period of 15 d was also studied.
Resumo:
The Ba2GdNbO6: Eu3+/Dy3+ and Li+-doped Ba2GdNbO6: Eu3+/Dy3+ phosphors were prepared by solid-state reaction process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) as well as lifetimes, was utilized to characterize the resulting phosphors. Under the excitation of ultraviolet light, the Ba2GdNbO6: Eu3+/Dy3+ and Li+-doped Ba2GdNbO6: Eu3+/Dy3+ show the characteristic emissions of Eu3+ (D-5(0)-F-7(1,2,3) transitions dominated by D-5(0)-F-7(1) at 593 nm) and Dy3+ (F-4(9/2)-H-6(15/2),(13/2) transitions dominated by F-4(9/2)-H-6(15/2) at 494 nm), respectively. The incorporation of Li+ ions into the Ba2GdNbO6: Eu3+/Dy3+ phosphors has enhanced the PL intensities depending on the doping concentration of Li+, and the highest emission was obtained in Ba2Gd0.9NbO6: 0.10Eu(3+), 0.01Li(+) and Ba2Gd0.95NbO6: 0.05Dy(3+), 0.07Li(+), respectively. An energy level diagram was proposed to explain the luminescence process in the phosphors.
Resumo:
High-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometry was developed and applied to the proteome analysis of bronchoalveolar lavage fluid (BALF) from a patient with pulmonary alveolar proteinosis. With use of 1-D and 2-D gel electrophoresis, surfactant protein A (SP-A) and other surfactant-related lung alveolar proteins were efficiently separated and identified by matrix-assisted laser desorption/ionization FTICR mass spectrometry . Low molecular mass BALF proteins were separated using a gradient 2-D gel. An efficient extraction/precipitation system was developed and used for the enrichment of surfactant proteins. The result of the BALF proteome analysis show the presence of several isoforms of SP-A, in which an N-non-glycosylierte form and several proline hydroxylations were identified. Furthermore, a number of protein spots were found to contain a mixture of proteins unresolved by 2-D gel electrophoresis, illustrating the feasibility of high-resolution mass spectrometry to provide identifications of proteins that remain unseparated in 2-D gels even upon extended pH gradients.
Resumo:
We investigated the electronic structure of the d-electron heavy-fermion system CaCu3Ru4O12 by use of the full-potential linearized augmented plane wave method. Our results indicate that the compound is a paramagnetic metal, in agreement with the experimental observation. The conductivity of the compound is governed by two main factors. One is the Ru-O dp pi coupling around the Fermi energy level, which makes Ru-O-Ru networks conductive. The other is the hybridization between the itinerant Ru 4d electrons and the localized Cu 3d (dz(2) and part of dx(2)-y(2) and dxy) electrons through O 2p orbitals in the energy region from -2.0 to -1.0 eV. The Ru-O-Cu interaction makes the localized Cu electrons start to be itinerant through the coupling with Ru 4d electrons. This results in Ru-O-Cu networks being conductive. Therefore, in the title compound, both Ru-O-Ru and Ru-O-Cu networks contribute to the conducting behavior.
Resumo:
The separation of Sc(III) from Y(III), La(III) and Yb(III) in [C(8)mim][PF6] containing Cyanex 925 has been investigated, and is reported in this paper. A cation exchange mechanism of Sc(III) in [C(8)mim][PF6] and Cyanex 925 is proposed by study of the influence of anionic and cationic species on the extraction. The coefficient of the equilibrium equation of Sc(III) was confirmed by slope analysis of log D-Sc vs log [Cyanex 925], and the loading capacity also confirmed the stoichiometry of Cyanex 925 to Sc(III) was close to 3:1. Infrared data for Cyanex 925 saturated with Sc(III) in [C(8)mim][PF6] indicated strong interaction between P=O of Cyanex 925 and Sc(III). In addition, the relationship between log D-Sc and temperature showed that temperature had little influence on the extraction process, and the resulting thermodynamic parameters indicated that an exothermic process was involved.
Resumo:
Novel bisphenol monomers (1a-d) containing phthalimide groups were synthesized by the reaction of phenolphthalein with ammonia, methylamine, aniline, and 4-tert-butylanilne, respectively. A series of cardo poly (arylene ether sulfone)s was synthesized via aromatic nucleophilic substitution of 1a-d with dichlorodiphenylsulfone, and characterized in terms of thermal, mechanical and gas transport properties to H-2, O-2, N-2, and CO2. The polymers showed high glass transition temperature in the range 230-296 degrees C, good solubility in polar solvents as well as excellent thermal stability with 5% weight loss above 410 degrees C. The most permeable membrane studied showed permeability coefficients of 1.78 barrers to O-2 and 13.80 barrers to CO2, with ideal selectivity. factors of 4.24 for O-2/N-2 pair and 28.75 for CO2/CH4 pair. Furthermore, the structure-property relationship among these cardo poly(arylene ether sulfone)s had been discussed on solubility, thermal stability, mechanical, and gas permeation properties. The results indicated that introducing 4-tert-butylphenyl group improved the gas permeability of polymers evidently.
Resumo:
Hole mobility in a copper-phthalocyanine (CuPc)-based top-contact transistor has been studied with various organic layer thicknesses. It is found that the transistor performance depends on the thickness of the CuPc layer, and the mobility increases with the increase in the CuPc layer and saturated at the thickness of 6 ML. The upper layers do not actively contribute to the carrier transport in the organic films. The morphology of the organic layer grown on the bare SiO2/Si substrate is also presented. The analysis of spatial correlations shows that the CuPc films grow on the SiO2 according to the mixed-layer mode.
Resumo:
BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)(2), Eu(NO3)(3) and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ D-5(0)-F-7(J) (J = 1-4) transitions, with the magnetic dipole D-5(0)-F-7(1) allowed transition (590 nm) being the most prominent emission line.
Resumo:
We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB2 (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB2 might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation.
Resumo:
A novel long-lasting phosphor CdSiO3:Mn2+ is reported in this paper. The Mn2+-doped CdSiO3 phosphor emits orange light with CIE chromaticity coordinates x = 0.5814 and y = 0.4139 under 254 nm UV light excitation. In the emission spectrum of 1% Mn2+-doped CdSiO3 phosphor, there is a broad emission band centered at 575 nm which can be attributed to the,pin-forbidden transition of the d-orbital electron associated with the Mn2+ ion. The phosphorescence can be seen by the naked eyes in the dark clearly even after the 254 nm UV irradiation have been removed for about 1 h. The mechanism of the origin of the long-lasting phosphorescence was discussed using the thermoluminescence curves.