973 resultados para Double bond position
Resumo:
Hydrogen bonded complexes formed between the square pyramidal Fe(CO)(5) with HX (X = F, Cl, Br), showing X-H center dot center dot center dot Fe interactions, have been investigated theoretically using density functional theory (DFT) including dispersion correction. Geometry, interaction energy, and large red shift of about 400 cm(-1) in the FIX stretching frequency confirm X-H center dot center dot center dot Fe hydrogen bond formation. In the (CO)(5)Fe center dot center dot center dot HBr complex, following the significant red shift, the HBr stretching mode is coupled with the carbonyl stretching modes. This clearly affects the correlation between frequency shift and binding energy, which is a hallmark of hydrogen bonds. Atoms in Molecule (AIM) theoretical analyses show the presence of a bond critical point between the iron and the hydrogen of FIX and significant mutual penetration. These X-H center dot center dot center dot Fe hydrogen bonds follow most but not all of the eight criteria proposed by Koch and Popelier (J. Phys. Chem. 1995, 99, 9747) based on their investigations on C-H center dot center dot center dot O hydrogen bonds. Natural bond orbital (NBO) analysis indicates charge transfer from the organometallic system to the hydrogen bond donor. However, there is no correlation between the extent of charge transfer and interaction,energy, contrary to what is proposed in the recent IUPAC recommendation (Pure Appl.. Chem. 2011, 83, 1637). The ``hydrogen bond radius'' for iron has been determined to be 1.60 +/- 0.02 angstrom, and not surprisingly it is between the covalent (127 angstrom) and van der Waals (2.0) radii of Fe. DFT and AIM theoretical studies reveal that Fe in square pyramidal Fe(CO)(5) can also form halogen bond with CIF and ClH as ``halogen bond donor''. Both these complexes show mutual penetration as well, though the Fe center dot center dot center dot Cl distance is closer to the sum of van der Waals radii of Fe and Cl in (CO)5Fe center dot center dot center dot ClH, and it is about 1 angstrom less in (CO)(5)Fe center dot center dot center dot ClF.
Resumo:
Seven double cysteine mutants of maltose binding protein (MBP) were generated with one each in the active cleft at position 298 and the second cysteine distributed over both domains of the protein. These cysteines were spin labeled and distances between the labels in biradical pairs determined by pulsed double electron-electron resonance (DEER) measurements. The values were compared with theoretical predictions of distances between the labels in biradicals constructed by molecular modeling from the crystal structure of MBP without maltose and were found to be in excellent agreement. MBP is in a molten globule state at pH 3.3 and is known to still bind its substrate maltose. The nitroxide spin label was sufficiently stable under these conditions. In preliminary experiments, DEER measurements were carried out with one of the mutants yielding a broad distance distribution as was to be expected if there is no explicit tertiary structure and the individual helices pointing into all possible directions.
Resumo:
Seleno-organic glutathione peroxidase (GPx) mimetics, including ebselen (Eb), have been tested in in vitro studies for their ability to scavenge reactive oxygen and nitrogen species, including hydrogen peroxide and peroxynitrite. In this study, we investigated the efficacies of two Eb analogues, m-hydroxy ebselen (ME) and ethanol-ebselen (EtE) and compared these with Eb in cell based assays. We found that ME is superior in attenuating the activation of hydrogen peroxide-induced pro-inflammatory mediators, ERK and P38 in human aortic endothelial cells. Consequently, we investigated the effects of ME in an in vivo model of diabetes, the ApoE/GPx1 double knockout (dKO) mouse. We found that ME attenuates plaque formation in the aorta and lesion deposition within the aortic sinus of diabetic dKO mice. Oxidative stress as assessed by 8-OHdG in urine and nitrotyrosine immunostaining in the aortic sinus and kidney tubules, was reduced by ME in diabetic dKO mice. ME also attenuated diabetes-associated renal injury which included tubulointerstitial fibrosis and glomerulosclerosis. Furthermore, the bioactivity of the pro-fibrotic cytokine transforming growth factor-beta (TGF-beta) as assessed by phospho-Smad2/3 immunostaining was attenuated after treatment with ME. TGF-beta-stimulated increases in collagen I and IV gene expression and protein levels were attenuated by ME in rat kidney tubular cells. However, in contrast to the superior activity of ME in in vitro and cell based assays, ME did not further augment the attenuation of diabetes-associated atherosclerosis and renal injury in our in vivo model when compared with Eb. In conclusion, this study strengthens the notion that bolstering GPx-like activity using synthetic mimetics may be a useful therapeutic strategy in lessening the burden of diabetic complications. However, these studies highlight the importance of in vivo analyses to test the efficacies of novel Eb analogues, as in vitro and cell based assays are only partly predictive of the in vivo situation.
Resumo:
This paper, for the first time, explores the charcatersictics of MOS capacitor controlled by independent double gates by numerical simulation and analytical modeling for its possible use in RF circuit design as a varactor. By numerical simulation it is shown how the quasi-static and non-quasi-static characteristics of the first gate capacitance could be tuned by the second gate biases. Effect of body doping and energy quantization are also discussed in this regard. A semi-empirical quasi-static model is also developed by using the existing incomplete Poisson solution of independent double gate transistors. Proposed model, which is valid from accumulation to inversion, is shown to have excellent agreement with numerical simulation for practical bias conditions.
Resumo:
Porous activated-carbons with a large surface-area have been the most common materials for electrical-double-layer capacitors (EDLCs). These carbons having a wide pore distribution ranges from micropores to macropores in conjunction with a random pore connection that facilitates the high specific-capacitance values. Pore distribution plays a central role in controlling the capacitance value of EDLCs, since electrolyte distribution inside the active material mainly depends on the pore distribution. This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors. This study examines the role of binder solvents used for the carbon-ink preparation on the microstructure of the electrodes and the consequent performance of the EDLCs. It is observed that the physical properties of the binder solvent namely its dielectric constant, viscosity and boiling point have important role in determining the pore-size distribution as well as the microstructure of electrodes which influence their specific capacitance values.
Resumo:
Diaminopropionate ammonialyase (DAPAL), a fold-typeII pyridoxal 5-phosphate-dependent enzyme, catalyzes the ,-elimination of diaminopropionate (DAP) to pyruvate and ammonia. DAPAL was able to utilize both d- and l-DAP as substrates with almost equal efficiency. Mutational analysis of functionally important residues such as Thr385, Asp125 and Asp194 was carried out to understand the mechanism by which the isomers are hydrolyzed. Further, the putative residues involved in the formation of disulfide bond Cys271 and Cys299 were also mutated. T385S, T385D sDAPAL were as active with dl-DAP as substrate as sDAPAL, whereas the later exhibited a threefold increase in catalytic efficiency with d-Ser as substrate. Further analysis of these mutants suggested that DAPAL might follow an anti-E-2 mechanism of catalysis that does not involve the formation of a quinonoid intermediate. Of the two mutants of Asp125, D125E showed complete loss of activity with d-DAP as substrate, whereas the reaction with l-DAP was not affected significantly, demonstrating that Asp125 was essential for abstraction of protons from the d-isomer. By contrast, mutational analysis of Asp194 showed that the residue may not be directly involved in proton abstraction from l-DAP. sDAPAL does not form a disulfide bond in solution, although the position of Cys299 and Cys271 in the modeled structure of sDAPAL favored the formation of a disulfide bond. Further, unlike eDAPAL, sDAPAL could be activated by monovalent cations. Mutation of the cysteine residues showed that Cys271 may be involved in coordinating the monovalent cation, as observed in the case of other fold-typeII enzymes.
Resumo:
Toggle mechanisms are ubiquitous in electrical switches. However, literature for their mechanical design is scarce. This paper defines and classifies the toggle phenomena observed during switching. The concept of double toggle introduced in this paper enables a systematic screening of kinematic structure for the suitability in high performance switches. Seven structural and three kinematic criteria are identified for this purpose. It is also demonstrated that each such feasible kinematic structure lends itself to multiple physical embodiments. Therefore, the theory and procedure presented in this work can be used for design of numerous kinematically distinct mechanisms. One representative mechanical embodiment for a novel double toggle switch, including mass and geometric shape of links has been included in the paper. The switching behavior of the design is validated using Pro/Mechanism (TM). (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We here report what we believe to be an important method for studying hydrogen bonding in systems containing a paramagnetic centre. The technique of electron-nuclear double resonance ( ENDOR) has been applied to study the hydrogen-bond network around the AsO44-. centre in X-ray irradiated KH2AsO4. ENDOR transitions from several sets of hydrogen nuclei surrounding the centre were observed at 4.2 degrees K and the spectra for two sets of neighbouring nuclei are identified. The angular dependences for these spectra are fitted with a spin-Hamiltonian to obtain the isotropic and anisotropic magnetic hyperfine constants. The results are discussed in terms of the available spectroscopic and crystallographic data on KH2AsO4 and the order-disorder model of ferroelectrictricity in this class of crystals.
Resumo:
Similar quantum phase diagrams and transitions are found for three classes of one-dimensional models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order wave (BOW) phase in some sectors. The models are frustrated spin-1/2 chains with variable range exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models with site energies for describing organic charge transfer salts. In some range of parameters, the models have a first order quantum transition at which the GS expectation value of the sublattice spin < S-A(2)> of odd or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters that lead to two continuous quantum transitions with continuous < S-A(2)>. Exact diagonalization of finite systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared separately in widely different contexts.
Resumo:
Similar quantum phase diagrams and transitions are found for three classes of one-dimensional models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order wave (BOW) phase in some sectors. The models are frustrated spin-1/2 chains with variable range exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models with site energies for describing organic charge transfer salts. In some range of parameters, the models have a first order quantum transition at which the GS expectation value of the sublattice spin < S-A(2)> of odd or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters that lead to two continuous quantum transitions with continuous < S-A(2)>. Exact diagonalization of finite systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared separately in widely different contexts.
Resumo:
Results of frequency-dependent and temperature-dependent dielectric measurements performed on the double-perovskite Tb2NiMnO6 are presented. The real (epsilon(1)(f,T)) and imaginary (epsilon(2)(f,T)) parts of dielectric permittivity show three plateaus suggesting dielectric relaxation originating from the bulk, grain boundaries and the sample-electrode interfaces, respectively. The epsilon(1)(f,T) and epsilon(2)(f,T) are successfully simulated by a RC circuit model. The complex plane of impedance, Z'-Z `', is simulated using a series network with a resistor R and a constant phase element. Through the analysis of epsilon(f,T) using the modified Debye model, two different relaxation time regimes separated by a characteristic temperature, T*, are identified. The temperature variation of R and C corresponding to the bulk and the parameter alpha from modified Debye fit lend support to this hypothesis. Interestingly, the T* compares with the Griffiths temperature for this compound observed in magnetic measurements. Though these results cannot be interpreted as magnetoelectric coupling, the relationship between lattice and magnetism is markedly clear. We assume that the observed features have their origin in the polar nanoregions which originate from the inherent cationic defect structure of double perovskites. Copyright (C) EPLA, 2013
Resumo:
Three isomeric meso-SiMe3C6H4 substituted BODIPYs have been synthesized and their optical properties studied. The constitutional isomers show similar absorption properties but vastly different emissive properties as a result of their different conformational flexibility. Fluorine-19 NMR study is used to unravel the conformational state of the BODIPY isomers at a molecular level. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
Mono- and trinuclear copper(II) complexes with 2-1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL) have been synthesized and structurally characterized. The mononuclear complex Cu(L)(H2O)(ONO2)] (1) crystallizes in monoclinic space group P2(1) /n with a square pyramidal Cu(II) center coordinated by the tridentate Schiff base (L) and a water ligand in the equatorial plane and an oxygen atom from nitrate in the axial position. The trinuclear complex (CuL)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (2) crystallizes in hexagonal space group P6(3); all three copper atoms are five-coordinate with square pyramidal geometries. The interactions of these complexes with calf-thymus DNA have been investigated using absorption spectrophotometry. The mononuclear complex binds more strongly than the trinuclear complex. The DNA cleavage activity of these complexes has been studied on double-stranded pBR 322 plasmid DNA by gel electrophoresis experiments in the absence and in the presence of added oxidant (H2O2). The trinuclear complex cleaves DNA more efficiently than the mononuclear complex in the presence of H2O2.
Resumo:
Free-standing Pt-aluminide (PtAl) bond coats exhibit a linear stress strain response under tensile loading and undergo brittle cleavage fracture at temperatures below the brittle-to-ductile transition temperature (BDTT). Above the BDTT, these coatings show yielding and fail in a ductile manner. In this paper, the various micromechanisms affecting the tensile fracture stress (FS) below the BDTT and yield strength (YS) above the BDTT in a PtAl bond coat have been ascertained and quantified at various temperatures. The micromechanisms have been identified by carrying out microtensile testing of stand-alone PtAl coating specimens containing different levels of Pt at temperatures between room temperature and 1100 degrees C and correlation of the corresponding fracture mechanisms with the deformation substructure in the coating. An important aspect of the influence of Pt on the tensile behavior, slip characteristics, FS/YS and BDTT in the PtAl coating has also been examined. The addition of Pt enhances the FS of the coating by Pt solid solution strengthening and imparts a concomitant increase in fracture toughness and yet causes a significant increase in the BDTT of the coating. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.