933 resultados para Diurnal rhythm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An amplified scissors confronts its digital symbol in this audio piece created for RELAY, an online music project devised and curated by Irish musician John Lambert aka Chequerboard. Digital audio editing cuts are placed randomly over scissors sound samples and then performed with the scissors instrument to determine the rhythm of the composition. RELAY creates a chain of sound pieces where each work is created in response to the previous so that ideas and sounds shift, mutate and evolve over time. Commissioned by Model Arts and Niland Gallery, Sligo, (Ireland).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Why does music pervade our lives and those of all known human beings living today and in the recent past? Why do we feel compelled to engage in musical activity, or at least simply enjoy listening to music even if we choose not to actively participate? I argue that this is because musicality—communication using variations in pitch, rhythm, dynamics and timbre, by a combination of the voice, body (as in dance), and material culture—was essential to the lives of our pre-linguistic hominin ancestors. As a consequence we have inherited a desire to engage with music, even if this has no adaptive benefit for us today as a species whose communication system is dominated by spoken language. In this article I provide a summary of the arguments to support this view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chapter starts from the premise that an historically- and institutionally-formed orientation to music education at primary level in European countries privileges a nineteenth century Western European music aesthetic, with its focus on formal characteristics such as melody and rhythm. While there is a move towards a multi-faceted understanding of musical ability, a discrete intelligence and willingness to accept musical styles or 'open-earedness', there remains a paucity of documented evidence of this in research at primary school level. To date there has been no study undertaken which has the potential to provide policy makers and practitioners with insights into the degree of homogeneity or universality in conceptions of musical ability within this educational sector. Against this background, a study was set up to explore the following research questions: 1. What conceptions of musical ability do primary teachers hold a) of themselves and; b) of their pupils? 2. To what extent are these conceptions informed by Western classical practices? A mixed methods approach was used which included survey questionnaire and semi-structured interview. Questionnaires have been sent to all classroom teachers in a random sample of primary schools in the South East of England. This was followed up with a series of semi-structured interviews with a sub-sample of respondents. The main ideas are concerned with the attitudes, beliefs and working theories held by teachers in contemporary primary school settings. By mapping the extent to which a knowledge base for teaching can be resistant to change in schools, we can problematise primary schools as sites for diversity and migration of cultural ideas. Alongside this, we can use the findings from the study undertaken in an English context as a starting point for further investigation into conceptions of music, musical ability and assessment held by practitioners in a variety of primary school contexts elsewhere in Europe; our emphasis here will be on the development of shared understanding in terms of policies and practices in music education. Within this broader framework, our study can have a significant impact internationally, with potential to inform future policy making, curriculum planning and practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three years of meteorological data collected at the WLEF-TV tower were used to drive a revised version of the Simple Biosphere (SiB 2.5) Model. Physiological properties and vegetation phenology were specified from satellite imagery. Simulated fluxes of heat, moisture, and carbon were compared to eddy covariance measurements taken onsite as a means of evaluating model performance on diurnal, synoptic, seasonal, and interannual time scales. The model was very successful in simulating variations of latent heat flux when compared to observations, slightly less so in the simulation of sensible heat flux. The model overestimated peak values of sensible heat flux on both monthly and diurnal scales. There was evidence that the differences between observed and simulated fluxes might be linked to wetlands near the WLEF tower, which were not present in the SiB simulation. The model overestimated the magnitude of the net ecosystem exchange of CO2 in both summer and winter. Mid-day maximum assimilation was well represented by the model, but late afternoon simulations showed excessive carbon uptake due to misrepresentation of within-canopy shading in the model. Interannual variability was not well simulated because only a single year of satellite imagery was used to parameterize the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The realistic representation of rainfall on the local scale in climate models remains a key challenge. Realism encompasses the full spatial and temporal structure of rainfall, and is a key indicator of model skill in representing the underlying processes. In particular, if rainfall is more realistic in a climate model, there is greater confidence in its projections of future change. In this study, the realism of rainfall in a very high-resolution (1.5 km) regional climate model (RCM) is compared to a coarser-resolution 12-km RCM. This is the first time a convection-permitting model has been run for an extended period (1989–2008) over a region of the United Kingdom, allowing the characteristics of rainfall to be evaluated in a climatological sense. In particular, the duration and spatial extent of hourly rainfall across the southern United Kingdom is examined, with a key focus on heavy rainfall. Rainfall in the 1.5-km RCM is found to be much more realistic than in the 12-km RCM. In the 12-km RCM, heavy rain events are not heavy enough, and tend to be too persistent and widespread. While the 1.5-km model does have a tendency for heavy rain to be too intense, it still gives a much better representation of its duration and spatial extent. Long-standing problems in climate models, such as the tendency for too much persistent light rain and errors in the diurnal cycle, are also considerably reduced in the 1.5-km RCM. Biases in the 12-km RCM appear to be linked to deficiencies in the representation of convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layer clouds are globally extensive. Their lower edges are charged negatively by the fair weather atmospheric electricity current flowing vertically through them. Using polar winter surface meteorological data from Sodankyla ̈ (Finland) and Halley (Antarctica), we find that when meteorological diurnal variations are weak, an appreciable diurnal cycle, on average, persists in the cloud base heights, detected using a laser ceilometer. The diurnal cloud base heights from both sites correlate more closely with the Carnegie curve of global atmospheric electricity than with local meteorological measurements. The cloud base sensitivities are indistinguishable between the northern and southern hemispheres, averaging a (4.0 ± 0.5) m rise for a 1% change in the fair weather electric current density. This suggests that the global fair weather current, which is affected by space weather, cosmic rays and the El Nin ̃o Southern Oscillation, is linked with layer cloud properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extended Canadian Middle Atmosphere Model is used to investigate the large-scale dynamics of the mesosphere and lower thermosphere (MLT). It is shown that the 4-day wave is substantially amplified in southern polar winter in the presence of instabilities arising from strong vertical shears in the MLT zonal mean zonal winds brought about by parameterized nonorographic gravity wave drag. A weaker 4-day wave in northern polar winter is attributed to the weaker wind shears that result from weaker parameterized wave drag. The 2-day wave also exhibits a strong dependence on zonal wind shears, in agreement with previous modeling studies. In the equatorial upper mesosphere, the migrating diurnal tide provides most of the resolved westward wave forcing, which varies semiannually in conjunction with the tide itself; resolved forcing by eastward traveling disturbances is dominated by smaller scales. Nonmigrating tides and other planetary-scale waves play only a minor role in the zonal mean zonal momentum budget in the tropics at these heights. Resolved waves are shown to play a significant role in the zonal mean meridional momentum budget in the MLT, impacting significantly on gradient wind balance. Balance fails at low latitudes as a result of a strong Reynolds stress associated with the migrating diurnal tide, an effect which is most pronounced at equinox when the tide is strongest. Resolved and parameterized waves account for most of the imbalance at higher latitudes in summer. This results in the gradient wind underestimating the actual eastward wind reversal by up to 40%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new technique for objective classification of boundary layers is applied to ground-based vertically pointing Doppler lidar and sonic anemometer data. The observed boundary layer has been classified into nine different types based on those in the Met Office ‘Lock’ scheme, using vertical velocity variance and skewness, along with attenuated backscatter coefficient and surface sensible heat flux. This new probabilistic method has been applied to three years of data from Chilbolton Observatory in southern England and a climatology of boundary-layer type has been created. A clear diurnal cycle is present in all seasons. The most common boundary-layer type is stable with no cloud (30.0% of the dataset). The most common unstable type is well mixed with no cloud (15.4%). Decoupled stratocumulus is the third most common boundary-layer type (10.3%) and cumulus under stratocumulus occurs 1.0% of the time. The occurrence of stable boundary-layer types is much higher in the winter than the summer and boundary-layer types capped with cumulus cloud are more prevalent in the warm seasons. The most common diurnal evolution of boundary-layer types, occurring on 52 days of our three-year dataset, is that of no cloud with the stability changing from stable to unstable during daylight hours. These results are based on 16393 hours, 62.4% of the three-year dataset, of diagnosed boundary-layer type. This new method is ideally suited to long-term evaluation of boundary-layer type parametrisations in weather forecast and climate models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We solve eight partial-differential, two-dimensional, nonlinear mean field equations, which describe the dynamics of large populations of cortical neurons. Linearized versions of these equations have been used to generate the strong resonances observed in the human EEG, in particular the α-rhythm (8–), with physiologically plausible parameters. We extend these results here by numerically solving the full equations on a cortex of realistic size, which receives appropriately “colored” noise as extra-cortical input. A brief summary of the numerical methods is provided. As an outlook to future applications, we explain how the effects of GABA-enhancing general anaesthetics can be simulated and present first results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the role of the anthropogenic heat flux on the urban heat island of London. To do this, the time-varying anthropogenic heat flux is added to an urban surface-energy balance parametrization, the Met Office–Reading Urban Surface Exchange Scheme (MORUSES), implemented in a 1 km resolution version of the UK Met Office Unified Model. The anthropogenic heat flux is derived from energy-demand data for London and is specified on the model's 1 km grid; it includes variations on diurnal and seasonal time-scales. We contrast a spring case with a winter case, to illustrate the effects of the larger anthropogenic heat flux in winter and the different roles played by thermodynamics in the different seasons. The surface-energy balance channels the anthropogenic heat into heating the urban surface, which warms slowly because of the large heat capacity of the urban surface. About one third of this additional warming goes into increasing the outgoing long-wave radiation and only about two thirds goes into increasing the sensible heat flux that warms the atmosphere. The anthropogenic heat flux has a larger effect on screen-level temperatures in the winter case, partly because the anthropogenic flux is larger then and partly because the boundary layer is shallower in winter. For the specific winter case studied here, the anthropogenic heat flux maintains a well-mixed boundary layer through the whole night over London, whereas the surrounding rural boundary layer becomes strongly stably stratified. This finding is likely to have important implications for air quality in winter. On the whole, inclusion of the anthropogenic heat flux improves the comparison between model simulations and measurements of screen-level temperature slightly and indicates that the anthropogenic heat flux is beginning to be an important factor in the London urban heat island.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mesoscale meteorological model (FOOT3DK) is coupled with a gas exchange model to simulate surface fluxes of CO2 and H2O under field conditions. The gas exchange model consists of a C3 single leaf photosynthesis sub-model and an extended big leaf (sun/shade) sub-model that divides the canopy into sunlit and shaded fractions. Simulated CO2 fluxes of the stand-alone version of the gas exchange model correspond well to eddy-covariance measurements at a test site in a rural area in the west of Germany. The coupled FOOT3DK/gas exchange model is validated for the diurnal cycle at singular grid points, and delivers realistic fluxes with respect to their order of magnitude and to the general daily course. Compared to the Jarvis-based big leaf scheme, simulations of latent heat fluxes with a photosynthesis-based scheme for stomatal conductance are more realistic. As expected, flux averages are strongly influenced by the underlying land cover. While the simulated net ecosystem exchange is highly correlated with leaf area index, this correlation is much weaker for the latent heat flux. Photosynthetic CO2 uptake is associated with transpirational water loss via the stomata, and the resulting opposing surface fluxes of CO2 and H2O are reproduced with the model approach. Over vegetated surfaces it is shown that the coupling of a photosynthesis-based gas exchange model with the land-surface scheme of a mesoscale model results in more realistic simulated latent heat fluxes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Earth’s fair weather atmospheric electric field shows, in clean air, an average daily variation which follows universal time, globally independent of the measurement position. This single diurnal cycle variation (maximum around 19UT and minimum around 03UT) is widely known as the Carnegie curve, after the geophysical survey vessel of the Carnegie Institution of Washington on which the original measurement campaigns demonstrating the universal time variation were undertaken. The Carnegie curve’s enduring importance is in providing a reference variation against which atmospheric electricity measurements are still compared; it is believed to originate from regular daily variations in atmospheric electrification associated with the different global disturbed weather regions. Details of the instrumentation, measurement principles and data obtained on the Carnegie’s seventh and final cruise are reviewed here, also deriving new harmonic coefficients allowing calculation of the Carnegie curve for different seasons. The additional harmonic analysis now identifies changes in the phasing of the maximum and minimum in the Carnegie curve, which shows a systematic seasonal variation, linked to the solstices and equinoxes, respectively.