946 resultados para Distribution systems
Resumo:
Pharmacogenomics promotes an understanding of the genetic basis for differences in efficacy or toxicity of drugs in different individuals. Implementation of the outcomes of pharmacogenomic research into clinical practice presents a number of difficulties for healthcare. This paper aims to highlight one of the Unique ethical challenges which pharmacogenomics presents for the utilisation of cost-effectiveness analysis by public health systems. This paper contends that pharmacogenomics provides a challenge to fundamental principles which underlie most systems for deciding which drugs should be publicly subsidised. Pharmacogenomics brings into focus the conflict between equality and utility in the context of using cost-effectiveness analysis to aid distribution of a limited national drug budget.
Resumo:
Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.
Resumo:
We review the field of quantum optical information from elementary considerations to quantum computation schemes. We illustrate our discussion with descriptions of experimental demonstrations of key communication and processing tasks from the last decade and also look forward to the key results likely in the next decade. We examine both discrete (single photon) type processing as well as those which employ continuous variable manipulations. The mathematical formalism is kept to the minimum needed to understand the key theoretical and experimental results.
Resumo:
We consider a problem of robust performance analysis of linear discrete time varying systems on a bounded time interval. The system is represented in the state-space form. It is driven by a random input disturbance with imprecisely known probability distribution; this distributional uncertainty is described in terms of entropy. The worst-case performance of the system is quantified by its a-anisotropic norm. Computing the anisotropic norm is reduced to solving a set of difference Riccati and Lyapunov equations and a special form equation.
Resumo:
A mechanical rule proposed in 1997 by Massimo Pittau for the distribution of the Etruscan sibilant graphemes sigma and san is investigated and found wanting. The etymological distribution proposed by Helmut Rix is clearly superior, yet many scholars appear reluctant to embrace Rix's findings. It is suggested that this reluctance stems in part from the incompatibility of Rix's notation with the traditional system. Consequently a simple method of reconciling the two systems is Proposed and then demonstrated in exhibiting the data relevant to Pittau's rule.
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Orientational fluorophores have been a useful tool in physical chemistry, biochemistry, and more recently structural biology due to the polarized nature of the light they emit and that fact that energy can be transferred between them. We present a practical scheme in which measurements of the intensity of emitted fluorescence can be used to determine limits on the mean and distribution of orientation of the absorption transition moment of membrane-bound. uorophores. We demonstrate how information about the orientation of. uorophores can be used to calculate the orientation factor k(2) required for use in FRET spectroscopy. We illustrate the method using images of AlexaFluor probes bound to MscL mechanosensitive transmembrane channel proteins in spherical liposomes.
Resumo:
Identifying water wastage in forms of leaks in a water distribution network of any city becomes essential as droughts are presenting serious threats to few major cities. In this paper, we propose a deployment of sensor network for monitoring water flow in any water distribution network. We cover the issues related with designing such a dedicated sensor network by considering types of sensors required, sensors' functionality, data collection, and providing computation serving as leak detection mechanism. The main focus of this paper is on appropriate network segmentation that provides the base for hierarchical approach to pipes' failure detection. We show a method for sensors allocation to the network in order to facilitate effective pipes monitoring. In general, the identified computational problem belongs to hard problems. The paper shows a heuristic method to build effective hierarchy of the network segmentation.
Resumo:
In this paper, we present a top down approach for integrated process modelling and distributed process execution. The integrated process model can be utilized for global monitoring and visualization and distributed process models for local execution. Our main focus in this paper is the presentation of the approach to support automatic generation and linking of distributed process models from an integrated process definition.
Resumo:
Despite extensive progress on the theoretical aspects of spectral efficient communication systems, hardware impairments, such as phase noise, are the key bottlenecks in next generation wireless communication systems. The presence of non-ideal oscillators at the transceiver introduces time varying phase noise and degrades the performance of the communication system. Significant research literature focuses on joint synchronization and decoding based on joint posterior distribution, which incorporate both the channel and code graph. These joint synchronization and decoding approaches operate on well designed sum-product algorithms, which involves calculating probabilistic messages iteratively passed between the channel statistical information and decoding information. Channel statistical information, generally entails a high computational complexity because its probabilistic model may involve continuous random variables. The detailed knowledge about the channel statistics for these algorithms make them an inadequate choice for real world applications due to power and computational limitations. In this thesis, novel phase estimation strategies are proposed, in which soft decision-directed iterative receivers for a separate A Posteriori Probability (APP)-based synchronization and decoding are proposed. These algorithms do not require any a priori statistical characterization of the phase noise process. The proposed approach relies on a Maximum A Posteriori (MAP)-based algorithm to perform phase noise estimation and does not depend on the considered modulation/coding scheme as it only exploits the APPs of the transmitted symbols. Different variants of APP-based phase estimation are considered. The proposed algorithm has significantly lower computational complexity with respect to joint synchronization/decoding approaches at the cost of slight performance degradation. With the aim to improve the robustness of the iterative receiver, we derive a new system model for an oversampled (more than one sample per symbol interval) phase noise channel. We extend the separate APP-based synchronization and decoding algorithm to a multi-sample receiver, which exploits the received information from the channel by exchanging the information in an iterative fashion to achieve robust convergence. Two algorithms based on sliding block-wise processing with soft ISI cancellation and detection are proposed, based on the use of reliable information from the channel decoder. Dually polarized systems provide a cost-and spatial-effective solution to increase spectral efficiency and are competitive candidates for next generation wireless communication systems. A novel soft decision-directed iterative receiver, for separate APP-based synchronization and decoding, is proposed. This algorithm relies on an Minimum Mean Square Error (MMSE)-based cancellation of the cross polarization interference (XPI) followed by phase estimation on the polarization of interest. This iterative receiver structure is motivated from Master/Slave Phase Estimation (M/S-PE), where M-PE corresponds to the polarization of interest. The operational principle of a M/S-PE block is to improve the phase tracking performance of both polarization branches: more precisely, the M-PE block tracks the co-polar phase and the S-PE block reduces the residual phase error on the cross-polar branch. Two variants of MMSE-based phase estimation are considered; BW and PLP.
Resumo:
The amplification of demand variation up a supply chain widely termed ‘the Bullwhip Effect’ is disruptive, costly and something that supply chain management generally seeks to minimise. Originally attributed to poor system design; deficiencies in policies, organisation structure and delays in material and information flow all lead to sub-optimal reorder point calculation. It has since been attributed to exogenous random factors such as: uncertainties in demand, supply and distribution lead time but these causes are not exclusive as academic and operational studies since have shown that orders and/or inventories can exhibit significant variability even if customer demand and lead time are deterministic. This increase in the range of possible causes of dynamic behaviour indicates that our understanding of the phenomenon is far from complete. One possible, yet previously unexplored, factor that may influence dynamic behaviour in supply chains is the application and operation of supply chain performance measures. Organisations monitoring and responding to their adopted key performance metrics will make operational changes and this action may influence the level of dynamics within the supply chain, possibly degrading the performance of the very system they were intended to measure. In order to explore this a plausible abstraction of the operational responses to the Supply Chain Council’s SCOR® (Supply Chain Operations Reference) model was incorporated into a classic Beer Game distribution representation, using the dynamic discrete event simulation software Simul8. During the simulation the five SCOR Supply Chain Performance Attributes: Reliability, Responsiveness, Flexibility, Cost and Utilisation were continuously monitored and compared to established targets. Operational adjustments to the; reorder point, transportation modes and production capacity (where appropriate) for three independent supply chain roles were made and the degree of dynamic behaviour in the Supply Chain measured, using the ratio of the standard deviation of upstream demand relative to the standard deviation of the downstream demand. Factors employed to build the detailed model include: variable retail demand, order transmission, transportation delays, production delays, capacity constraints demand multipliers and demand averaging periods. Five dimensions of supply chain performance were monitored independently in three autonomous supply chain roles and operational settings adjusted accordingly. Uniqueness of this research stems from the application of the five SCOR performance attributes with modelled operational responses in a dynamic discrete event simulation model. This project makes its primary contribution to knowledge by measuring the impact, on supply chain dynamics, of applying a representative performance measurement system.
Resumo:
We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.
Resumo:
Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Logistics distribution network design is one of the major decision problems arising in contemporary supply chain management. The decision involves many quantitative and qualitative factors that may be conflicting in nature. This paper applies an integrated multiple criteria decision making approach to design an optimal distribution network. In the approach, the analytic hierarchy process (AHP) is used first to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, the goal programming (GP) model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. In this paper, two commercial packages are used: Expert Choice for determining the AHP priorities of the warehouses, and LINDO for solving the GP model. © 2007 IEEE.