977 resultados para Dispersion weighting
Resumo:
We extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths, and different pulse evolutions are observed depending on the net cavity dispersion.
Resumo:
A novel all-optical regeneration technique using loop-mirror intensity-filtering and nonlinear broadening in normal-dispersion fibre is described. The device offers 2R-regeneration function and phase margin improvement. The technique is applied to 40Gbit/s return-to-zero optical data streams.
Resumo:
The authors describe the operation of an actively modelocked Er fibre laser incorporating a chrped in fibre Bragg reflection grating as one end mirror to the cavity, acting as a lumped highly dispersive element. In one oreientation the grating shifted the cavity into normal dispersion regime and pulses of -25ps duration were produced. In the opposite oreintation, the cavity dispersion was anomalous and ~8ps pulses were produced with characterisitics typical of solitons propagating in a periodically perturbed system.
Resumo:
The authors study experimentally ~10 ps return-to-zero pulse propagation near the net dispersion zero of an optical fibre transmission line. Stable near-jitter-free propagation was observed over 70 Mm. Pulse stabilisation and ASE suppression were achieved through the saturable aborber mechanism of nonlinear polarisation rotation.
Resumo:
We propose the use of a dispersive medium with a negative nonlinear refractive-index coefficient as a way to compensate for the dispersion and the nonlinear effects resulting from pulse propagation in an optical fiber. The undoing of pulse interaction might allow for increased bit rates.
Resumo:
We analytically and numerically analyze the occurrence of modulational instability in fibers with periodic changes in the group-velocity dispersion. For small variations, a set of resonances occurs in the gain spectrum. However, large dispersion variations eliminate these resonances and restrict the bandwidth of the fundamental gain spectrum. This research has been motivated by the adoption of dispersion management techniques in long-haul optical communications.
Resumo:
We demonstrate a dual-wavelength fibre laser system using chirped fibre Bragg gratings as reflectors and dispersive elements. The system produces two synchronized trains of soliton pulses with rms jitter of 620 fs.
Resumo:
We show experimentally and numerically that in high-speed strongly dispersion-managed standard fiber soliton systems nonlinear interactions limit the propagation distance. We present results that show that the effect of these interactions can be significantly reduced by appropriate location of the amplifier within the dispersion map. Using this technique, we have been able to extend the propagation distance of 10-Gbit/s 231–1pseudorandom binary sequence soliton data to 16, 500km over standard fiber by use of dispersion compensation. To our knowledge this distance is the farthest transmission over standard fiber without active control ever reported, and it was achieved with the amplifier placed after the dispersion-compensating fiber in a recirculating loop.
Resumo:
The feasibility of stable soliton transmission system was demonstrated using a practical dispersion map in conjunction with in-line nonlinear optical loop mirrors (NOLMs). The system's performance was examined at 40 Gbit/s data rate in terms of maximum propagation distance corresponding to a bit error rate of more than 10-9. The bit error rate was estimated by means of the standard Q-factor.
Resumo:
In dispersion managed high bit rate systems, the importance of correctly choosing the pulse launch position is investigated. Using this technique, error free transmission has been achieved of a 40 Gbit/s 231-1 nonlinear RZ PRBS over 1160 km in a dispersion compensated standard fiber propagation experiment with a 75 km standard fiber span.