993 resultados para Dispersió (Física nuclear)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process.

Approach and Results: We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α–mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation.

Conclusions: Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α–mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patulin (PAT) is a mycotoxin produced by various species of fungi, with Penicillium expansum being the most commonly occurring. Apples and apple products are the main sources of PAT contamination. This mycotoxin has been shown to induce toxic effects in animals, a few of which include reproductive toxicity and interference with the endocrine system. Here the endocrine disrupting potential of PAT has been investigated in vitro to identify disruption at the level of oestrogen, androgen, progestagen and glucocorticoid nuclear receptor transcriptional activity, and to assess interferences in estradiol, testosterone and progesterone steroid hormone production. At the receptor level, 0.5-5000ng/ml (0.0032-32μM) PAT did not appear to induce any specific (ant) agonistic responses in reporter gene assays (RGAs); however, nuclear transcriptional activity was affected. A >6 fold increase in the glucocorticoid receptor transcriptional activity was observed following treatment with 5000ng/ml PAT in the presence of cortisol. At the hormone production level, despite cytotoxicity being observed after treatment with 5000ng/ml PAT, estradiol levels had increased >2 fold. At 500ng/ml PAT treatment, an increase in progesterone and a decrease in testosterone production were observed. The findings of this study could be considered in assessing the health risks following exposure to PAT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study reports the effect a cell permeabilizer, polyethylenimine (PEI) has on the photodynamic effect of methylene blue (MB) and nuclear fast red (NFR) in the presence of hydrogen peroxide (H2O2). The photosensitized destruction of the algae Chlorella vulgaris under irradiation with visible light is examined. The photodynamic effect was investigated under aerobic and anaerobic conditions. The presence of a permeabilizer during the photosensitized destruction of C. vulgaris does not enhance the activity of the MB, MB/H2O2 system or the NFR, NFR/H2O 2 system under aerobic conditions. However under anaerobic conditions we have determined that when a cell permeabilizer was added to the MB/H 2O2 system, the photosensitized destruction of C. vulgaris proceeded via a combination of Type I and Type II mechanisms. The presence of PEI enforces MB/H2O2 to be active toward the destruction of C. vulgaris whether oxygen is present or absent. Under aerobic and anaerobic conditions the activity of NFR was suppressed in the presence of PEI as a result of electrostatic interactions between the photosensitizer and the cell permeabilizer. The decrease in fluorescence recorded is indicative of destruction of the chlorophyll a pigment. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A considerable number of investigations have started to elucidate the essential roles biological agents play in the biodeterioration of stone. Chemical biocides are becoming increasingly banned because of the environmental and health hazards associated with these toxic substances. The present study reports the photodynamic effect of Methylene Blue (MB) and Nuclear Fast Red (NFR) in the presence of hydrogen peroxide (H2O2) on the destruction of the algae Chlorella vulgaris (C. vulgaris) under irradiation with visible light. Illumination of C. vulgaris in the presence of MB or NFR combined with H2O2 results in the decomposition of both the algal species and the photosensitizer. The photodynamic effect was investigated under aerobic and anaerobic conditions. Differences in mechanism type are reported and are dependent on both the presence and the absence of oxygen. The behavior of each photosensitizer leads to a Type II mechanism and a Type I/Type II combination for MB and NFR, respectively, being concluded. This novel combination could be effective for the remediation of biofilm-colonized stone surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure for the determination of three commonly encountered ecstasy type drugs has been demonstrated using proton nuclear magnetic resonance spectrometry (H-1-NMR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Klebsiella pneumoniae is etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group have shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-on-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening, that of metabolism and transport (32% of the mutants), and of enveloperelated genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression which in turn underlined the NF- κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS Opolysaccharide and T2SS mutants-induced responses were dependent on TLR2-TLR4- MyD88 activation suggested that LPS Opolysaccharide and PulA perturbed TLRdependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS Opolysaccharide and PulA T2SS could be new targets for designing new antimicrobials. Increasing TLR-governed defence responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relative strengths of surface interaction for individual carbon atoms in acyclic and cyclic hydrocarbons adsorbed on alumina surfaces are determined using chemically resolved 13C nuclear magnetic resonance (NMR) T1 relaxation times. The ratio of relaxation times for the adsorbed atoms T1,ads to the bulk liquid relaxation time T1,bulk provides an indication of the mobility of the atom. Hence a low T1,ads/T1,bulk ratio indicates a stronger surface interaction. The carbon atoms associated with unsaturated bonds in the molecules are seen to exhibit a larger reduction in T1 on adsorption relative to the aliphatic carbons, consistent with adsorption occurring through the carbon-carbon multiple bonds. The relaxation data are interpreted in terms of proximity of individual carbon atoms to the alumina surface and adsorption conformations are inferred. Furthermore, variations of interaction strength and molecular configuration have been explored as a function of adsorbate coverage, temperature, surface pre-treatment, and in the presence of co-adsorbates. This relaxation time analysis is appropriate for studying the behaviour of hydrocarbons adsorbed on a wide range of catalyst support and supported-metal catalyst surfaces, and offers the potential to explore such systems under realistic operating conditions when multiple chemical components are present at the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells experience damage from exogenous and endogenous sources that endanger genome stability. Several cellular pathways have evolved to detect DNA damage and mediate its repair. Although many proteins have been implicated in these processes, only recent studies have revealed how they operate in the context of high-ordered chromatin structure. Here, we identify the nuclear oncogene SET (I2PP2A) as a modulator of DNA damage response (DDR) and repair in chromatin surrounding double-strand breaks (DSBs). We demonstrate that depletion of SET increases DDR and survival in the presence of radiomimetic drugs, while overexpression of SET impairs DDR and homologous recombination (HR)-mediated DNA repair. SET interacts with the Kruppel-associated box (KRAB)-associated co-repressor KAP1, and its overexpression results in the sustained retention of KAP1 and Heterochromatin protein 1 (HP1) on chromatin. Our results are consistent with a model in which SET-mediated chromatin compaction triggers an inhibition of DNA end resection and HR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathways of biotransformation of 4-fluorobiphenyl (4FBP) by the ectomycorrhizal fungus Tylospora fibrilosa and several other mycorrhizal fungi were investigated by using 19F nuclear magnetic resonance (NMR) spectroscopy in combination with 14C radioisotope-detected high-performance liquid chromatography (14C- HPLC). Under the conditions used in this study T. fibrillosa and some other species degraded 4FBP. 14C-HPLC profiles indicated that there were four major biotransformation products, whereas 19F NMR showed that there were six major fluorine-containing products. We confirmed that 4-fluorobiphen-4'-ol and 4-fluorobiphen-3'-ol were two of the major products formed, but no other products were conclusively identified. There was no evidence for the expected biotransformation pathway (namely, meta cleavage of the less halogenated ring), as none of the expected products of this route were found. To the best of our knowledge, this is the first report describing intermediates formed during mycorrhizal degradation of halogenated biphenyls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of high linear energy transfer radiations in the form of carbon ions in heavy ion beam lines or alpha particles in new radionuclide treatments has increased substantially over the past decade and will continue to do so due to the favourable dose distributions they can offer versus conventional therapies. Previously it has been shown that exposure to heavy ions induces pan-nuclear phosphorylation of several DNA repair proteins such as H2AX and ATM in vitro. Here we describe similar effects of alpha particles on ex vivo irradiated primary human peripheral blood lymphocytes. Following alpha particle irradiation pan-nuclear phosphorylation of H2AX and ATM, but not DNA-PK and 53BP1, was observed throughout the nucleus. Inhibition of ATM, but not DNA-PK, resulted in the loss of pan-nuclear phosphorylation of H2AX in alpha particle irradiated lymphocytes. Pan-nuclear gamma-H2AX signal was rapidly lost over 24h at a much greater rate than foci loss. Surprisingly, pan-nuclear gamma-H2AX intensity was not dependent on the number of alpha particle induced double strand breaks, rather the number of alpha particles which had traversed the cell nucleus. This distinct fluence dependent damage signature of particle radiation is important in both the fields of radioprotection and clinical oncology in determining radionuclide biological dosimetry and may be indicative of patient response to new radionuclide cancer therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past nuclear disasters, such as the atomic bombings in 1945 and major accidents at nuclear power plants, have highlighted similarities in potential public health effects of radiation in both circumstances, including health issues unrelated to radiation exposure. Although the rarity of nuclear disasters limits opportunities to undertake rigorous research of evidence-based interventions and strategies, identification of lessons learned and development of an effective plan to protect the public, minimise negative effects, and protect emergency workers from exposure to high-dose radiation is important. Additionally, research is needed to help decision makers to avoid premature deaths among patients already in hospitals and other vulnerable groups during evacuation. Since nuclear disasters can affect hundreds of thousands of people, a substantial number of people are at risk of physical and mental harm in each disaster. During the recovery period after a nuclear disaster, physicians might need to screen for psychological burdens and provide general physical and mental health care for many affected residents who might experience long-term displacement. Reliable communication of personalised risks has emerged as a challenge for health-care professionals beyond the need to explain radiation protection. To overcome difficulties of risk communication and provide decision aids to protect workers, vulnerable people, and residents after a nuclear disaster, physicians should receive training in nuclear disaster response. This training should include evidence-based interventions, support decisions to balance potential harms and benefits, and take account of scientific uncertainty in provision of community health care. An open and joint learning process is essential to prepare for, and minimise the effects of, future nuclear disasters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated protein C (APC) protects against sepsis in animal models and inhibits the lipopolysacharide (LPS)-induced elaboration of proinflammatory cytokines from monocytes. The molecular mechanism responsible for this property is unknown. We assessed the effect of APC on LPS-induced tumour necrosis factor alpha (TNF-alpha) production and on the activation of the central proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) in a THP-1 cell line. Cells were preincubated with varying concentrations of APC (200 microg/ml, 100 microg/ml and 20 microg/ml) before addition of LPS (100 ng/ml and 10 microg/ml). APC inhibited LPS-induced production of TNF-alpha both in the presence and absence of fetal calf serum (FCS), although the effect was less marked with 10% FCS. APC also inhibited LPS-induced activation of NF-kappaB, with APC (200 microg/ml) abolishing the effect of LPS (100 ng/ml). The ability of APC to inhibit LPS-induced translocation of NF-kappaB is likely to be a significant event given the critical role of the latter in the host inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.