886 resultados para Discrete analytic function theory
Resumo:
Cette thèse présente une théorie de la fonction formelle et de la structure des phrases dans la musique contemporaine, théorie qui peut être utilisée aussi bien comme outil analytique que pour créer de nouvelles œuvres. Deux concepts théoriques actuels aident à clarifier la structure des phrases : les projections temporelles de Christopher Hasty et la théorie des fonctions formelles de William Caplin, qui inclut le concept de l’organisation formelle soudée versus lâche (tight-knit vs. loose). Les projections temporelles sont perceptibles grâce à l’accent mis sur les paramètres secondaires, comme le style du jeu, l’articulation et le timbre. Des sections avec une organisation formelle soudée ont des projections temporelles claires, qui sont créées par la juxtaposition des motifs distincts, généralement sous la forme d'une idée de base en deux parties. Ces projections organisent la musique en phrases de présentation, en phrases de continuité et finalement, à des moments formels charnières, en phrases cadentielles. Les sections pourvues d’une organisation plus lâche tendent à présenter des projections et mouvements harmoniques moins clairs et moins d’uniformité motivique. La structure des phrases de trois pièces tardives pour instrument soliste de Pierre Boulez est analysée : Anthèmes I pour violon (1991-1992) et deux pièces pour piano, Incises (2001) et une page d’éphéméride (2005). Les idées proposées dans le présent document font suite à une analyse de ces œuvres et ont eu une forte influence sur mes propres compositions, en particulier Lucretia Overture pour orchestre et 4 Impromptus pour flûte, saxophone soprano et piano, qui sont également analysés en détail. Plusieurs techniques de composition supplémentaires peuvent être discernés dans ces deux œuvres, y compris l'utilisation de séquence mélodiques pour contrôler le rythme harmonique; des passages composés de plusieurs couches musicales chacun avec un structure de phrase distinct; et le relâchement de l'organisation formelle de matériels récurrents. Enfin, la composition de plusieurs autres travaux antérieurs a donné lieu à des techniques utilisées dans ces deux œuvres et ils sont brièvement abordés dans la section finale.
Resumo:
A novel surrogate model is proposed in lieu of Computational Fluid Dynamics (CFD) solvers, for fast nonlinear aerodynamic and aeroelastic modeling. A nonlinear function is identified on selected interpolation points by
a discrete empirical interpolation method (DEIM). The flow field is then reconstructed using a least square approximation of the flow modes extracted
by proper orthogonal decomposition (POD). The aeroelastic reduce order
model (ROM) is completed by introducing a nonlinear mapping function
between displacements and the DEIM points. The proposed model is investigated to predict the aerodynamic forces due to forced motions using
a N ACA 0012 airfoil undergoing a prescribed pitching oscillation. To investigate aeroelastic problems at transonic conditions, a pitch/plunge airfoil
and a cropped delta wing aeroelastic models are built using linear structural models. The presence of shock-waves triggers the appearance of limit
cycle oscillations (LCO), which the model is able to predict. For all cases
tested, the new ROM shows the ability to replicate the nonlinear aerodynamic forces, structural displacements and reconstruct the complete flow
field with sufficient accuracy at a fraction of the cost of full order CFD
model.
Resumo:
In-situ characterisation of thermocouple sensors is a challenging problem. Recently the authors presented a blind characterisation technique based on the cross-relation method of blind identification. The method allows in-situ identification of two thermocouple probes, each with a different dynamic response, using only sampled sensor measurement data. While the technique offers certain advantages over alternative methods, including low estimation variance and the ability to compensate for noise induced bias, the robustness of the method is limited by the multimodal nature of the cost function. In this paper, a normalisation term is proposed which improves the convexity of
the cost function. Further, a normalisation and bias compensation hybrid approach is presented that exploits the advantages of both normalisation and bias compensation. It is found that the optimum of the hybrid cost function is less biased and more stable than when only normalisation is applied. All results were verified by simulation.
Resumo:
A novel surrogate model is proposed in lieu of computational fluid dynamic (CFD) code for fast nonlinear aerodynamic modeling. First, a nonlinear function is identified on selected interpolation points defined by discrete empirical interpolation method (DEIM). The flow field is then reconstructed by a least square approximation of flow modes extracted by proper orthogonal decomposition (POD). The proposed model is applied in the prediction of limit cycle oscillation for a plunge/pitch airfoil and a delta wing with linear structural model, results are validate against a time accurate CFD-FEM code. The results show the model is able to replicate the aerodynamic forces and flow fields with sufficient accuracy while requiring a fraction of CFD cost.
Resumo:
Motivated by new and innovative rental business models, this paper develops a novel discrete-time model of a rental operation with random loss of inventory due to customer use. The inventory level is chosen before the start of a finite rental season, and customers not immediately served are lost. Our analysis framework uses stochastic comparisons of sample paths to derive structural results that hold under good generality for demands, rental durations, and rental unit lifetimes. Considering different \recirculation" rules | i.e., which rental unit to choose to meet each demand | we prove the concavity of the expected profit function and identify the optimal recirculation rule. A numerical study clarifies when considering rental unit loss and recirculation rules matters most for the inventory decision: Accounting for rental unit loss can increase the expected profit by 7% for a single season and becomes even more important as the time horizon lengthens. We also observe that the optimal inventory level in response to increasing loss probability is non-monotonic. Finally, we show that choosing the optimal recirculation rule over another simple policy allows more rental units to be profitably added, and the profit-maximizing service level increases by up to 6 percentage points.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Les jeux de policiers et voleurs sont étudiés depuis une trentaine d’années en informatique et en mathématiques. Comme dans les jeux de poursuite en général, des poursuivants (les policiers) cherchent à capturer des évadés (les voleurs), cependant ici les joueurs agissent tour à tour et sont contraints de se déplacer sur une structure discrète. On suppose toujours que les joueurs connaissent les positions exactes de leurs opposants, autrement dit le jeu se déroule à information parfaite. La première définition d’un jeu de policiers-voleurs remonte à celle de Nowakowski et Winkler [39] et, indépendamment, Quilliot [46]. Cette première définition présente un jeu opposant un seul policier et un seul voleur avec des contraintes sur leurs vitesses de déplacement. Des extensions furent graduellement proposées telles que l’ajout de policiers et l’augmentation des vitesses de mouvement. En 2014, Bonato et MacGillivray [6] proposèrent une généralisation des jeux de policiers-voleurs pour permettre l’étude de ceux-ci dans leur globalité. Cependant, leur modèle ne couvre aucunement les jeux possédant des composantes stochastiques tels que ceux dans lesquels les voleurs peuvent bouger de manière aléatoire. Dans ce mémoire est donc présenté un nouveau modèle incluant des aspects stochastiques. En second lieu, on présente dans ce mémoire une application concrète de l’utilisation de ces jeux sous la forme d’une méthode de résolution d’un problème provenant de la théorie de la recherche. Alors que les jeux de policiers et voleurs utilisent l’hypothèse de l’information parfaite, les problèmes de recherches ne peuvent faire cette supposition. Il appert cependant que le jeu de policiers et voleurs peut être analysé comme une relaxation de contraintes d’un problème de recherche. Ce nouvel angle de vue est exploité pour la conception d’une borne supérieure sur la fonction objectif d’un problème de recherche pouvant être mise à contribution dans une méthode dite de branch and bound.
Resumo:
In this paper we show how to construct the Evans function for traveling wave solutions of integral neural field equations when the firing rate function is a Heaviside. This allows a discussion of wave stability and bifurcation as a function of system parameters, including the speed and strength of synaptic coupling and the speed of axonal signals. The theory is illustrated with the construction and stability analysis of front solutions to a scalar neural field model and a limiting case is shown to recover recent results of L. Zhang [On stability of traveling wave solutions in synaptically coupled neuronal networks, Differential and Integral Equations, 16, (2003), pp.513-536.]. Traveling fronts and pulses are considered in more general models possessing either a linear or piecewise constant recovery variable. We establish the stability of coexisting traveling fronts beyond a front bifurcation and consider parameter regimes that support two stable traveling fronts of different speed. Such fronts may be connected and depending on their relative speed the resulting region of activity can widen or contract. The conditions for the contracting case to lead to a pulse solution are established. The stability of pulses is obtained for a variety of examples, in each case confirming a previously conjectured stability result. Finally we show how this theory may be used to describe the dynamic instability of a standing pulse that arises in a model with slow recovery. Numerical simulations show that such an instability can lead to the shedding of a pair of traveling pulses.
Resumo:
This dissertation demonstrates an explanation of damage and reliability of critical components and structures within the second law of thermodynamics. The approach relies on the fundamentals of irreversible thermodynamics, specifically the concept of entropy generation due to materials degradation as an index of damage. All failure mechanisms that cause degradation, damage accumulation and ultimate failure share a common feature, namely energy dissipation. Energy dissipation, as a fundamental measure for irreversibility in a thermodynamic treatment of non-equilibrium processes, leads to and can be expressed in terms of entropy generation. The dissertation proposes a theory of damage by relating entropy generation to energy dissipation via generalized thermodynamic forces and thermodynamic fluxes that formally describes the resulting damage. Following the proposed theory of entropic damage, an approach to reliability and integrity characterization based on thermodynamic entropy is discussed. It is shown that the variability in the amount of the thermodynamic-based damage and uncertainties about the parameters of a distribution model describing the variability, leads to a more consistent and broader definition of the well know time-to-failure distribution in reliability engineering. As such it has been shown that the reliability function can be derived from the thermodynamic laws rather than estimated from the observed failure histories. Furthermore, using the superior advantages of the use of entropy generation and accumulation as a damage index in comparison to common observable markers of damage such as crack size, a method is proposed to explain the prognostics and health management (PHM) in terms of the entropic damage. The proposed entropic-based damage theory to reliability and integrity is then demonstrated through experimental validation. Using this theorem, the corrosion-fatigue entropy generation function is derived, evaluated and employed for structural integrity, reliability assessment and remaining useful life (RUL) prediction of Aluminum 7075-T651 specimens tested.
Resumo:
This thesis argues that the study of narrative television has been limited by an adherence to accepted and commonplace conceptions of endings as derived from literary theory, particularly a preoccupation with the terminus of the text as the ultimate site of cohesion, structure, and meaning. Such common conceptions of endings, this thesis argues, are largely incompatible with the realities of television’s production and reception, and as a result the study of endings in television needs to be re-thought to pay attention to the specificities of the medium. In this regard, this thesis proposes a model of intra-narrative endings, islands of cohesion, structure, and meaning located within television texts, as a possible solution to the problem of endings in television. These intra-narrative endings maintain the functionality of traditional endings, whilst also allowing for the specificities of television as a narrative medium. The first two chapters set out the theoretical groundwork, first by exploring the essential characteristics of narrative television (serialisation, fragmentation, duration, repetition, and accumulation), then by exploring the unique relationship between narrative television and the forces of contingency. These chapters also introduce the concept of intra-narrative endings as a possible solution to the problems of television’s narrative structure, and the medium’s relationship to contingency. Following on from this my three case studies examine forms of television which have either been traditionally defined as particularly resistant to closure (soap opera and the US sitcom) or which have received little analysis in terms of their narrative structure (sports coverage). Each of these case studies provides contextual material on these televisual forms, situating them in terms of their narrative structure, before moving on to analyse them in terms of my concept of intra-narrative endings. In the case of soap opera, the chapter focusses on the death of the long running character Pat Butcher in the British soap EastEnders (BBC, 1985-), while my chapter on the US sitcom focusses on the varying levels of closure that can be located within the US sitcom, using Friends (NBC, 1993-2004) as a particular example. Finally, my chapter on sports coverage analyses the BBC’s coverage of the 2012 London Olympics, and focusses on the narratives surrounding cyclists Chris Hoy and Victoria Pendleton. Each of these case studies identifies their chosen events as intra-narrative endings within larger, ongoing texts, and analyses the various ways in which they operate within those wider texts. This thesis is intended to make a contribution to the emerging field of endings studies within television by shifting the understanding of endings away from a dominant literary model which overwhelmingly focusses on the terminus of the text, to a more televisually specific model which pays attention to the particular contexts of the medium’s production and reception.
Resumo:
We study the relations of shift equivalence and strong shift equivalence for matrices over a ring $\mathcal{R}$, and establish a connection between these relations and algebraic K-theory. We utilize this connection to obtain results in two areas where the shift and strong shift equivalence relations play an important role: the study of finite group extensions of shifts of finite type, and the Generalized Spectral Conjectures of Boyle and Handelman for nonnegative matrices over subrings of the real numbers. We show the refinement of the shift equivalence class of a matrix $A$ over a ring $\mathcal{R}$ by strong shift equivalence classes over the ring is classified by a quotient $NK_{1}(\mathcal{R}) / E(A,\mathcal{R})$ of the algebraic K-group $NK_{1}(\calR)$. We use the K-theory of non-commutative localizations to show that in certain cases the subgroup $E(A,\mathcal{R})$ must vanish, including the case $A$ is invertible over $\mathcal{R}$. We use the K-theory connection to clarify the structure of algebraic invariants for finite group extensions of shifts of finite type. In particular, we give a strong negative answer to a question of Parry, who asked whether the dynamical zeta function determines up to finitely many topological conjugacy classes the extensions by $G$ of a fixed mixing shift of finite type. We apply the K-theory connection to prove the equivalence of a strong and weak form of the Generalized Spectral Conjecture of Boyle and Handelman for primitive matrices over subrings of $\mathbb{R}$. We construct explicit matrices whose class in the algebraic K-group $NK_{1}(\mathcal{R})$ is non-zero for certain rings $\mathcal{R}$ motivated by applications. We study the possible dynamics of the restriction of a homeomorphism of a compact manifold to an isolated zero-dimensional set. We prove that for $n \ge 3$ every compact zero-dimensional system can arise as an isolated invariant set for a homeomorphism of a compact $n$-manifold. In dimension two, we provide obstructions and examples.
Resumo:
This dissertation investigates the connection between spectral analysis and frame theory. When considering the spectral properties of a frame, we present a few novel results relating to the spectral decomposition. We first show that scalable frames have the property that the inner product of the scaling coefficients and the eigenvectors must equal the inverse eigenvalues. From this, we prove a similar result when an approximate scaling is obtained. We then focus on the optimization problems inherent to the scalable frames by first showing that there is an equivalence between scaling a frame and optimization problems with a non-restrictive objective function. Various objective functions are considered, and an analysis of the solution type is presented. For linear objectives, we can encourage sparse scalings, and with barrier objective functions, we force dense solutions. We further consider frames in high dimensions, and derive various solution techniques. From here, we restrict ourselves to various frame classes, to add more specificity to the results. Using frames generated from distributions allows for the placement of probabilistic bounds on scalability. For discrete distributions (Bernoulli and Rademacher), we bound the probability of encountering an ONB, and for continuous symmetric distributions (Uniform and Gaussian), we show that symmetry is retained in the transformed domain. We also prove several hyperplane-separation results. With the theory developed, we discuss graph applications of the scalability framework. We make a connection with graph conditioning, and show the in-feasibility of the problem in the general case. After a modification, we show that any complete graph can be conditioned. We then present a modification of standard PCA (robust PCA) developed by Cand\`es, and give some background into Electron Energy-Loss Spectroscopy (EELS). We design a novel scheme for the processing of EELS through robust PCA and least-squares regression, and test this scheme on biological samples. Finally, we take the idea of robust PCA and apply the technique of kernel PCA to perform robust manifold learning. We derive the problem and present an algorithm for its solution. There is also discussion of the differences with RPCA that make theoretical guarantees difficult.
Resumo:
Magnetic theory and application to a complex volcanic area located in Southern Italy are here discussed showing the example of the Gulf of Naples, located at Southern Italy Tyrrhenian margin. A magnetic anomaly map of the Gulf of Naples has been constructed aimed at highlighting new knowledge on geophysics and volcanology of this area of the Eastern Tyrrhenian margin, characterized by a complex geophysical setting, strongly depending on sea bottom topography. The theoretical aspects of marine magnetometry and multibeam bathymetry have been discussed. Magnetic data processing included the correction of the data for the diurnal variation, the correction of the data for the offset and the leveling of the data as a function of the correction at the cross-points of the navigation lines. Multibeam and single-beam bathymetric data processing has been considered. Magnetic anomaly fields in the Naples Bay have been discussed through a detailed geological interpretation and correlated with main morpho-structural features recognized through morphobathymetric interpretation. Details of magnetic anomalies have been selected, represented and correlated with significant seismic profiles, recorded on the same navigation lines of magnetometry. They include the continental shelf offshore the Somma-Vesuvius volcanic complex, the outer shelf of the Gulf of Pozzuoli offshore the Phlegrean Fields volcanic complex, the relict volcanic banks of Pentapalummo, Nisida and Miseno, the Gaia volcanic bank on the Naples slope, the western slope of the Dohrn canyon, the Magnaghi canyon’s head and the magnetic anomalies among the Ischia and Procida islands.
Resumo:
In the first part of this thesis we generalize a theorem of Kiming and Olsson concerning the existence of Ramanujan-type congruences for a class of eta quotients. Specifically, we consider a class of generating functions analogous to the generating function of the partition function and establish a bound on the primes ℓ for which their coefficients c(n) obey congruences of the form c(ℓn + a) ≡ 0 (mod ℓ). We use this last result to answer a question of H.C. Chan. In the second part of this thesis [S2] we explore a natural analog of D. Calegari’s result that there are no hyperbolic once-punctured torus bundles over S^1 with trace field having a real place. We prove a contrasting theorem showing the existence of several infinite families of pairs (−χ, p) such that there exist hyperbolic surface bundles over S^1 with trace field of having a real place and with fiber having p punctures and Euler characteristic χ. This supports our conjecture that with finitely many known exceptions there exist such examples for each pair ( −χ, p).
Resumo:
Cette thèse présente une théorie de la fonction formelle et de la structure des phrases dans la musique contemporaine, théorie qui peut être utilisée aussi bien comme outil analytique que pour créer de nouvelles œuvres. Deux concepts théoriques actuels aident à clarifier la structure des phrases : les projections temporelles de Christopher Hasty et la théorie des fonctions formelles de William Caplin, qui inclut le concept de l’organisation formelle soudée versus lâche (tight-knit vs. loose). Les projections temporelles sont perceptibles grâce à l’accent mis sur les paramètres secondaires, comme le style du jeu, l’articulation et le timbre. Des sections avec une organisation formelle soudée ont des projections temporelles claires, qui sont créées par la juxtaposition des motifs distincts, généralement sous la forme d'une idée de base en deux parties. Ces projections organisent la musique en phrases de présentation, en phrases de continuité et finalement, à des moments formels charnières, en phrases cadentielles. Les sections pourvues d’une organisation plus lâche tendent à présenter des projections et mouvements harmoniques moins clairs et moins d’uniformité motivique. La structure des phrases de trois pièces tardives pour instrument soliste de Pierre Boulez est analysée : Anthèmes I pour violon (1991-1992) et deux pièces pour piano, Incises (2001) et une page d’éphéméride (2005). Les idées proposées dans le présent document font suite à une analyse de ces œuvres et ont eu une forte influence sur mes propres compositions, en particulier Lucretia Overture pour orchestre et 4 Impromptus pour flûte, saxophone soprano et piano, qui sont également analysés en détail. Plusieurs techniques de composition supplémentaires peuvent être discernés dans ces deux œuvres, y compris l'utilisation de séquence mélodiques pour contrôler le rythme harmonique; des passages composés de plusieurs couches musicales chacun avec un structure de phrase distinct; et le relâchement de l'organisation formelle de matériels récurrents. Enfin, la composition de plusieurs autres travaux antérieurs a donné lieu à des techniques utilisées dans ces deux œuvres et ils sont brièvement abordés dans la section finale.