882 resultados para Direction of time
Resumo:
BACKGROUND: Abstracts of presentations at scientific meetings are usually available only in conference proceedings. If subsequent full publication of abstract results is based on the magnitude or direction of study results, publication bias may result. Publication bias, in turn, creates problems for those conducting systematic reviews or relying on the published literature for evidence. OBJECTIVES: To determine the rate at which abstract results are subsequently published in full, and the time between meeting presentation and full publication. To assess the association between study characteristics and full publication. SEARCH STRATEGY: We searched MEDLINE, EMBASE, The Cochrane Library, Science Citation Index, reference lists, and author files. Date of most recent search: June 2003. SELECTION CRITERIA: We included all reports that examined the subsequent full publication rate of biomedical results initially presented as abstracts or in summary form. Follow-up of abstracts had to be at least two years. DATA COLLECTION AND ANALYSIS: Two reviewers extracted data. We calculated the weighted mean full publication rate and time to full publication. Dichotomous variables were analyzed using relative risk and random effects models. We assessed time to publication using Kaplan-Meier survival analyses. MAIN RESULTS: Combining data from 79 reports (29,729 abstracts) resulted in a weighted mean full publication rate of 44.5% (95% confidence interval (CI) 43.9 to 45.1). Survival analyses resulted in an estimated publication rate at 9 years of 52.6% for all studies, 63.1% for randomized or controlled clinical trials, and 49.3% for other types of study designs.'Positive' results defined as any 'significant' result showed an association with full publication (RR = 1.30; CI 1.14 to 1.47), as did 'positive' results defined as a result favoring the experimental treatment (RR =1.17; CI 1.02 to 1.35), and 'positive' results emanating from randomized or controlled clinical trials (RR = 1.18, CI 1.07 to 1.30).Other factors associated with full publication include oral presentation (RR = 1.28; CI 1.09 to 1.49); acceptance for meeting presentation (RR = 1.78; CI 1.50 to 2.12); randomized trial study design (RR = 1.24; CI 1.14 to 1.36); and basic research (RR = 0.79; CI 0.70 to 0.89). Higher quality of abstracts describing randomized or controlled clinical trials was also associated with full publication (RR = 1.30, CI 1.00 to 1.71). AUTHORS' CONCLUSIONS: Only 63% of results from abstracts describing randomized or controlled clinical trials are published in full. 'Positive' results were more frequently published than not 'positive' results.
Resumo:
It has been established that successful pancreas transplantation in Type 1 (insulin-dependent) diabetic patients results in normal but exaggerated phasic glucose-induced insulin secretion, normal intravenous glucose disappearance rates, improved glucose recovery from insulin-induced hypoglycaemia, improved glucagon secretion during insulin-induced hypoglycaemia, but no alterations in pancreatic polypeptide responses to hypoglycaemia. However, previous reports have not segregated the data in terms of the length of time following successful transplantation and very little prospective data collected over time in individual patients has been published. This article reports that in general there are no significant differences in the level of improvement when comparing responses as early as three months post-operatively up to as long as two years post-operatively when examining the data cross-sectionally in patients who have successfully maintained their allografts. Moreover, this remarkable constancy in pancreatic islet function is also seen in a smaller group of patients who have been examined prospectively at various intervals post-operatively. It is concluded that successful pancreas transplantation results in remarkable improvements in Alpha and Beta cell but not PP cell function that are maintained for at least one to two years.
Resumo:
Target localization has a wide range of military and civilian applications in wireless mobile networks. Examples include battle-field surveillance, emergency 911 (E911), traffc alert, habitat monitoring, resource allocation, routing, and disaster mitigation. Basic localization techniques include time-of-arrival (TOA), direction-of-arrival (DOA) and received-signal strength (RSS) estimation. Techniques that are proposed based on TOA and DOA are very sensitive to the availability of Line-of-sight (LOS) which is the direct path between the transmitter and the receiver. If LOS is not available, TOA and DOA estimation errors create a large localization error. In order to reduce NLOS localization error, NLOS identifcation, mitigation, and localization techniques have been proposed. This research investigates NLOS identifcation for multiple antennas radio systems. The techniques proposed in the literature mainly use one antenna element to enable NLOS identifcation. When a single antenna is utilized, limited features of the wireless channel can be exploited to identify NLOS situations. However, in DOA-based wireless localization systems, multiple antenna elements are available. In addition, multiple antenna technology has been adopted in many widely used wireless systems such as wireless LAN 802.11n and WiMAX 802.16e which are good candidates for localization based services. In this work, the potential of spatial channel information for high performance NLOS identifcation is investigated. Considering narrowband multiple antenna wireless systems, two xvNLOS identifcation techniques are proposed. Here, the implementation of spatial correlation of channel coeffcients across antenna elements as a metric for NLOS identifcation is proposed. In order to obtain the spatial correlation, a new multi-input multi-output (MIMO) channel model based on rough surface theory is proposed. This model can be used to compute the spatial correlation between the antenna pair separated by any distance. In addition, a new NLOS identifcation technique that exploits the statistics of phase difference across two antenna elements is proposed. This technique assumes the phases received across two antenna elements are uncorrelated. This assumption is validated based on the well-known circular and elliptic scattering models. Next, it is proved that the channel Rician K-factor is a function of the phase difference variance. Exploiting Rician K-factor, techniques to identify NLOS scenarios are proposed. Considering wideband multiple antenna wireless systems which use MIMO-orthogonal frequency division multiplexing (OFDM) signaling, space-time-frequency channel correlation is exploited to attain NLOS identifcation in time-varying, frequency-selective and spaceselective radio channels. Novel NLOS identi?cation measures based on space, time and frequency channel correlation are proposed and their performances are evaluated. These measures represent a better NLOS identifcation performance compared to those that only use space, time or frequency.
Resumo:
The High-Altitude Water Cherenkov (HAWC) Experiment is a gamma-ray observatory that utilizes water silos as Cherenkov detectors to measure the electromagnetic air showers created by gamma rays. The experiment consists of an array of closely packed water Cherenkov detectors (WCDs), each with four photomultiplier tubes (PMTs). The direction of the gamma ray will be reconstructed using the times when the electromagnetic shower front triggers PMTs in each WCD. To achieve an angular resolution as low as 0.1 degrees, a laser calibration system will be used to measure relative PMT response times. The system will direct 300ps laser pulses into two fiber-optic networks. Each network will use optical fan-outs and switches to direct light to specific WCDs. The first network is used to measure the light transit time out to each pair of detectors, and the second network sends light to each detector, calibrating the response times of the four PMTs within each detector. As the relative PMT response times are dependent on the number of photons in the light pulse, neutral density filters will be used to control the light intensity across five orders of magnitude. This system will run both continuously in a low-rate mode, and in a high-rate mode with many intensity levels. In this thesis, the design of the calibration system and systematic studies verifying its performance are presented.
Resumo:
Direction-of-arrival (DOA) estimation is susceptible to errors introduced by the presence of real-ground and resonant size scatterers in the vicinity of the antenna array. To compensate for these errors pre-calibration and auto-calibration techniques are presented. The effects of real-ground constituent parameters on the mutual coupling (MC) of wire type antenna arrays for DOA estimation are investigated. This is accomplished by pre-calibration of the antenna array over the real-ground using the finite element method (FEM). The mutual impedance matrix is pre-estimated and used to remove the perturbations in the received terminal voltage. The unperturbed terminal voltage is incorporated in MUSIC algorithm to estimate DOAs. First, MC of quarter wave monopole antenna arrays is investigated. This work augments an existing MC compensation technique for ground-based antennas and proposes reduction in MC for antennas over finite ground as compared to the perfect ground. A factor of 4 decrease in both the real and imaginary parts of the MC is observed when considering a poor ground versus a perfectly conducting one for quarter wave monopoles in the receiving mode. A simulated result to show the compensation of errors direction of arrival (DOA) estimation with actual realization of the environment is also presented. Secondly, investigations for the effects on received MC of λ/2 dipole arrays placed near real-earth are carried out. As a rule of thumb, estimation of mutual coupling can be divided in two regions of antenna height that is very near ground 0
Resumo:
Within the Yellowstone National Park, Wyoming, the silicic Yellowstone volcanic field is one of the most active volcanic systems all over the world. Although the last rhyolite eruption occurred around 70,000 years ago, Yellowstone is still believed to be volcanically active, due to high hydrothermal and seismic activity. The earthquake data used in this study cover the period of time between 1988 and 2010. Earthquake relocations and a set of 369 well-constrained, double-couple, focal mechanism solutions were computed. Events were grouped according to location and time to investigate trends in faulting. The majority of the events has oblique, normal-faulting solutions. The overall direction of extension throughout the 0.64 Ma Yellowstone caldera looks nearly ENE, consistently with the direction of alignments of volcanic vents within the caldera, but detailed study revealed spatial and temporal variations. Stress-field solutions for different areas and time periods were calculated from earthquake focal mechanism inversion. A well-resolved rotation of σ3 was found, from NNE-SSW near the Hebgen Lake fault zone, to ENE-WSW near Norris Junction. In particular, the σ3 direction changed throughout the years in the Norris Junction area, from being ENE-WSW, as calculated in the study by Waite and Smith (2004), to NNE-SSW, while the other σ3 directions are mostly unchanged over time. The Yellowstone caldera was subject to periods of net uplift and subsidence over the past century, explained in previous studies as caused by expanding or contracting sills, at different depths. Based on the models used to explain these deformation periods, we investigated the relationship between variability in aseismic deformation and seismic activity and faulting styles. Focal mechanisms and P and T axes were divided into temporal and depth intervals, in order to identify spatial or temporal trends in deformation. The presence of “chocolate tablet” structures, with composite dilational faults, was identified in many stages of the deformation history both in the Norris Geyser Basin area and inside the caldera. Strike-slip component movement was found in a depth interval below a contracting sill, indicating the movement of magma towards the caldera.
Resumo:
OBJECTIVE: Anatomic reduction and stable fixation by means of tissue- preserving surgical approaches. INDICATIONS Displaced acetabular fractures. Surgical hip dislocation approach with larger displacement of the posterior column in comparison to the anterior column, transtectal fractures, additional intraarticular fragments, marginal impaction. Stoppa approach with larger displacement of the anterior column in comparison to the posterior column. A combined approach might be necessary with difficult reduction. CONTRAINDICATIONS Fractures > 15 days (then ilioinguinal or extended iliofemoral approaches). Suprapubic catheters and abdominal problems (e.g., previous laparotomy due to visceral injuries) with Stoppa approach (then switch to classic ilioinguinal approach). SURGICAL TECHNIQUE: Surgical hip dislocation: lateral decubitus position. Straight lateral incision centered over the greater trochanter. Entering of the Gibson interval. Digastric trochanteric osteotomy with protection of the medial circumflex femoral artery. Opening of the interval between the piriformis and the gluteus minimus muscle. Z-shaped capsulotomy. Dislocation of the femoral head. Reduction and fixation of the posterior column with plate and screws. Fixation of the anterior column with a lag screw in direction of the superior pubic ramus. Stoppa approach: supine position. Incision according to Pfannenstiel. Longitudinal splitting of the anterior portion of the rectus sheet and the rectus abdominis muscle. Blunt dissection of the space of Retzius. Ligation of the corona mortis, if present. Blunt dissection of the quadrilateral plate and the anterior column. Reduction of the anterior column and fixation with a reconstruction plate. Fixation of the posterior column with lag screws. If necessary, the first window of the ilioinguinal approach can be used for reduction and fixation of the posterior column. POSTOPERATIVE MANAGEMENT: During hospital stay, intensive mobilization of the hip joint using a continuous passive motion machine with a maximum flexion of 90 degrees . No active abduction and passive adduction over the body's midline, if a surgical dislocation was performed. Maximum weight bearing 10-15 kg for 8 weeks. Then, first clinical and radiographic follow-up. Deep venous thrombosis prophylaxis for 8 weeks postoperatively. RESULTS: 17 patients with a mean follow-up of 3.2 years. Ten patients were operated via surgical hip dislocation, two patients with a Stoppa approach, and five using a combined or alternative approach. Anatomic reduction was achieved in ten of the twelve patients (83%) without primary total hip arthroplasty. Mean operation time 3.3 h for surgical hip dislocation and 4.2 h for the Stoppa approach. Complications comprised one delayed trochanteric union, one heterotopic ossification, and one loss of reduction. There were no cases of avascular necrosis. In two patients, a total hip arthroplasty was performed due to the development of secondary hip osteoarthritis.
Resumo:
Background Access to health care can be described along four dimensions: geographic accessibility, availability, financial accessibility and acceptability. Geographic accessibility measures how physically accessible resources are for the population, while availability reflects what resources are available and in what amount. Combining these two types of measure into a single index provides a measure of geographic (or spatial) coverage, which is an important measure for assessing the degree of accessibility of a health care network. Results This paper describes the latest version of AccessMod, an extension to the Geographical Information System ArcView 3.×, and provides an example of application of this tool. AccessMod 3 allows one to compute geographic coverage to health care using terrain information and population distribution. Four major types of analysis are available in AccessMod: (1) modeling the coverage of catchment areas linked to an existing health facility network based on travel time, to provide a measure of physical accessibility to health care; (2) modeling geographic coverage according to the availability of services; (3) projecting the coverage of a scaling-up of an existing network; (4) providing information for cost effectiveness analysis when little information about the existing network is available. In addition to integrating travelling time, population distribution and the population coverage capacity specific to each health facility in the network, AccessMod can incorporate the influence of landscape components (e.g. topography, river and road networks, vegetation) that impact travelling time to and from facilities. Topographical constraints can be taken into account through an anisotropic analysis that considers the direction of movement. We provide an example of the application of AccessMod in the southern part of Malawi that shows the influences of the landscape constraints and of the modes of transportation on geographic coverage. Conclusion By incorporating the demand (population) and the supply (capacities of heath care centers), AccessMod provides a unifying tool to efficiently assess the geographic coverage of a network of health care facilities. This tool should be of particular interest to developing countries that have a relatively good geographic information on population distribution, terrain, and health facility locations.
Resumo:
Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.
Resumo:
Ein auf Basis von Prozessdaten kalibriertes Viskositätsmodell wird vorgeschlagen und zur Vorhersage der Viskosität einer Polyamid 12 (PA12) Kunststoffschmelze als Funktion von Zeit, Temperatur und Schergeschwindigkeit angewandt. Im ersten Schritt wurde das Viskositätsmodell aus experimentellen Daten abgeleitet. Es beruht hauptsächlich auf dem drei-parametrigen Ansatz von Carreau, wobei zwei zusätzliche Verschiebungsfaktoren eingesetzt werden. Die Temperaturabhängigkeit der Viskosität wird mithilfe des Verschiebungsfaktors aT von Arrhenius berücksichtigt. Ein weiterer Verschiebungsfaktor aSC (Structural Change) wird eingeführt, der die Strukturänderung von PA12 als Folge der Prozessbedingungen beim Lasersintern beschreibt. Beobachtet wurde die Strukturänderung in Form einer signifikanten Viskositätserhöhung. Es wurde geschlussfolgert, dass diese Viskositätserhöhung auf einen Molmassenaufbau zurückzuführen ist und als Nachkondensation verstanden werden kann. Abhängig von den Zeit- und Temperaturbedingungen wurde festgestellt, dass die Viskosität als Folge des Molmassenaufbaus exponentiell gegen eine irreversible Grenze strebt. Die Geschwindigkeit dieser Nachkondensation ist zeit- und temperaturabhängig. Es wird angenommen, dass die Pulverbetttemperatur einen Molmassenaufbau verursacht und es damit zur Kettenverlängerung kommt. Dieser fortschreitende Prozess der zunehmenden Kettenlängen setzt molekulare Beweglichkeit herab und unterbindet die weitere Nachkondensation. Der Verschiebungsfaktor aSC drückt diese physikalisch-chemische Modellvorstellung aus und beinhaltet zwei zusätzliche Parameter. Der Parameter aSC,UL entspricht der oberen Viskositätsgrenze, wohingegen k0 die Strukturänderungsrate angibt. Es wurde weiterhin festgestellt, dass es folglich nützlich ist zwischen einer Fließaktivierungsenergie und einer Strukturänderungsaktivierungsenergie für die Berechnung von aT und aSC zu unterscheiden. Die Optimierung der Modellparameter erfolgte mithilfe eines genetischen Algorithmus. Zwischen berechneten und gemessenen Viskositäten wurde eine gute Übereinstimmung gefunden, so dass das Viskositätsmodell in der Lage ist die Viskosität einer PA12 Kunststoffschmelze als Folge eines kombinierten Lasersinter Zeit- und Temperatureinflusses vorherzusagen. Das Modell wurde im zweiten Schritt angewandt, um die Viskosität während des Lasersinter-Prozesses in Abhängigkeit von der Energiedichte zu berechnen. Hierzu wurden Prozessdaten, wie Schmelzetemperatur und Belichtungszeit benutzt, die mithilfe einer High-Speed Thermografiekamera on-line gemessen wurden. Abschließend wurde der Einfluss der Strukturänderung auf das Viskositätsniveau im Prozess aufgezeigt.
Resumo:
Frequency-transformed EEG resting data has been widely used to describe normal and abnormal brain functional states as function of the spectral power in different frequency bands. This has yielded a series of clinically relevant findings. However, by transforming the EEG into the frequency domain, the initially excellent time resolution of time-domain EEG is lost. The topographic time-frequency decomposition is a novel computerized EEG analysis method that combines previously available techniques from time-domain spatial EEG analysis and time-frequency decomposition of single-channel time series. It yields a new, physiologically and statistically plausible topographic time-frequency representation of human multichannel EEG. The original EEG is accounted by the coefficients of a large set of user defined EEG like time-series, which are optimized for maximal spatial smoothness and minimal norm. These coefficients are then reduced to a small number of model scalp field configurations, which vary in intensity as a function of time and frequency. The result is thus a small number of EEG field configurations, each with a corresponding time-frequency (Wigner) plot. The method has several advantages: It does not assume that the data is composed of orthogonal elements, it does not assume stationarity, it produces topographical maps and it allows to include user-defined, specific EEG elements, such as spike and wave patterns. After a formal introduction of the method, several examples are given, which include artificial data and multichannel EEG during different physiological and pathological conditions.
Resumo:
Introduction: Nocturnal dreams can be considered as a kind of simulation of the real world on a higher cognitive level (Erlacher & Schredl, 2008). Within lucid dreams, the dreamer is aware of the dream state and thus able to control the ongoing dream content. Previous studies could demonstrate that it is possible to practice motor tasks during lucid dreams and doing so improved performance while awake (Erlacher & Schredl, 2010). Even though lucid dream practice might be a promising kind of cognitive rehearsal in sports, little is known about the characteristics of actions in lucid dreams. The purpose of the present study was to explore the relationship between time in dreams and wakefulness because in an earlier study (Erlacher & Schredl, 2004) we found that performing squads took lucid dreamers 44.5 % more time than in the waking state while for counting the same participants showed no differences between dreaming and wakefulness. To find out if the task modality, the task length or the task complexity require longer times in lucid dreams than in wakefulness three experiments were conducted. Methods: In the first experiment five proficient lucid dreamers spent two to three non-consecutive nights in the sleep laboratory with polysomnographic recording to control for REM sleep and determine eye signals. Participants counted from 1-10, 1-20 and 1-30 in wakefulness and in their lucid dreams. While dreaming they marked onset of lucidity as well as beginning and end of the counting task with a Left-Right-Left-Right eye movement and reported their dreams after being awakened. The same procedure was used for the second experiment with seven lucid dreamers except that they had to walk 10, 20 or 30 steps. In the third experiment nine participants performed an exercise involving gymnastics elements such as various jumps and a roll. To control for length of the task the gymnastic exercise in the waking state lasted about the same time as walking 10 steps. Results: As a general result we found – as in the study before – that performing a task in the lucid dream requires more time than in wakefulness. This tendency was found for all three tasks. However, there was no difference for the task modality (counting vs. motor task). Also the relative time for the different lengths of the tasks showed no difference. And finally, the more complex motor task (gymnastic routine) did not require more time in lucid dreams than the simple motor task. Discussion/Conclusion: The results showed that there is a robust effect of time in lucid dreams compared to wakefulness. The three experiments could not explain that those differences are caused by task modality, task length or task complexity. Therefore further possible candidates needs to be investigated e.g. experience in lucid dreaming or psychological variables. References: Erlacher, D. & Schredl, M. (2010). Practicing a motor task in a lucid dream enhances subsequent performance: A pilot study. The Sport Psychologist, 24(2), 157-167. Erlacher, D. & Schredl, M. (2008). Do REM (lucid) dreamed and executed actions share the same neural substrate? International Journal of Dream Research, 1(1), 7-13. Erlacher, D. & Schredl, M. (2004). Time required for motor activity in lucid dreams. Perceptual and Motor Skills, 99, 1239-1242.
Resumo:
In this study, we compared direction detection thresholds of passive self-motion in the dark between artistic gymnasts and controls. Twenty-four professional female artistic gymnasts (ranging from 7 to 20 years) and age-matched controls were seated on a motion platform and asked to discriminate the direction of angular (yaw, pitch, roll) and linear (leftward–rightward) motion. Gymnasts showed lower thresholds for the linear leftward–rightward motion. Interestingly, there was no difference for the angular motions. These results show that the outstanding self-motion abilities in artistic gymnasts are not related to an overall higher sensitivity in self-motion perception. With respect to vestibular processing, our results suggest that gymnastic expertise is exclusively linked to superior interpretation of otolith signals when no change in canal signals is present. In addition, thresholds were overall lower for the older (14–20 years) than for the younger (7–13 years) participants, indicating the maturation of vestibular sensitivity from childhood to adolescence.
Resumo:
OBJECTIVES We sought to analyze the time course of atrial fibrillation (AF) episodes before and after circular plus linear left atrial ablation and the percentage of patients with complete freedom from AF after ablation by using serial seven-day electrocardiograms (ECGs). BACKGROUND The curative treatment of AF targets the pathophysiological corner stones of AF (i.e., the initiating triggers and/or the perpetuation of AF). The pathophysiological complexity of both may not result in an "all-or-nothing" response but may modify number and duration of AF episodes. METHODS In patients with highly symptomatic AF, circular plus linear ablation lesions were placed around the left and right pulmonary veins, between the two circles, and from the left circle to the mitral annulus using the electroanatomic mapping system. Repetitive continuous 7-day ECGs administered before and after catheter ablation were used for rhythm follow-up. RESULTS In 100 patients with paroxysmal (n = 80) and persistent (n = 20) AF, relative duration of time spent in AF significantly decreased over time (35 +/- 37% before ablation, 26 +/- 41% directly after ablation, and 10 +/- 22% after 12 months). Freedom from AF stepwise increased in patients with paroxysmal AF and after 12 months measured at 88% or 74% depending on whether 24-h ECG or 7-day ECG was used. Complete pulmonary vein isolation was demonstrated in <20% of the circular lesions. CONCLUSIONS The results obtained in patients with AF treated with circular plus linear left atrial lesions strongly indicate that substrate modification is the main underlying pathophysiologic mechanism and that it results in a delayed cure instead of an immediate cure.
Resumo:
We present a possible source of pickup ions (PUIs) the ribbon observed by the Interstellar Boundary EXplorer (IBEX). We suggest that a gyrating solar wind and PUIs in the ramp and in the near downstream region of the termination shock (TS) could provide a significant source of energetic neutral atoms (ENAs) in the ribbon. A fraction of the solar wind and PUIs are reflected and energized during the first contact with the TS. Some of the solar wind may be reflected propagating toward the Sun but most of the solar wind ions form a gyrating beam-like distribution that persists until it is fully thermalized further downstream. Depending on the strength of the shock, these gyrating distributions can exist for many gyration periods until they are scattered/thermalized due to wave-particle interactions at the TS and downstream in the heliosheath. During this time, ENAs can be produced by charge exchange of interstellar neutral atoms with the gyrating ions. In order to determine the flux of energetic ions, we estimate the solar wind flux at the TS using pressure estimates inferred from in situ measurements. Assuming an average path length in the radial direction of the order of a few AU before the distribution of gyrating ions is thermalized, one can explain a significant fraction of the intensity of ENAs in the ribbon observed by IBEX. With a localized source and such a short integration path, this model would also allow fast time variations of the ENA flux.