947 resultados para Dipalmitoyl phosphatidyl glycerol (DPPG)
Resumo:
here is controversy over the role of marine methane hydrates in atmospheric methane concentrations and climate change during the last glacial period. In this study of two sediment cores from the southeast Bering Sea (700 m and 1467 m water depth), we identify multiple episodes during the last glacial period of intense methane flux reaching the seafloor. Within the uncertainty of the radiocarbon age model, the episodes are contemporaneous in the two cores and have similar timing and duration as Dansgaard-Oeschger events. The episodes are marked by horizons of sediment containing 13C-depleted authigenic carbonate minerals; 13C-depleted archaeal and bacterial lipids, which resemble those found in ANME-1 type anaerobic methane oxidizing microbial consortia; and changes in the abundance and species distribution of benthic foraminifera. The similar timing and isotopic composition of the authigenic carbonates in the two cores is consistent with a region-wide increase in the upward flux of methane bearing fluids. This study is the first observation outside Santa Barbara Basin of pervasive, repeated methane flux in glacial sediments. However, contrary to the "Clathrate Gun Hypothesis" (Kennett et al., 2003), these coring sites are too deep for methane hydrate destabilization to be the cause, implying that a much larger part of the ocean's sedimentary methane may participate in climate or carbon cycle feedback at millennial timescales. We speculate that pulses of methane in these opal-rich sediments could be caused by the sudden release of overpressure in pore fluids that builds up gradually with silica diagenesis. The release could be triggered by seismic shaking on the Aleutian subduction zone caused by hydrostatic pressure increase associated with sea level rise at the start of interstadials.
Resumo:
In dieser Arbeit wurde das Zeitintervall zwischen 20 und 10 ka vor heute einschließlich des Heinrichevent 1 und der Younger Dryas am Kern GeoB 3910-2 neu untersucht. An organischen Parametern, basierend auf der Verteilung von bakteriellen GDGTs, und Elementkonzentrationen wurde eine Rekonstruktion der klimatischen Bedingungen und Veränderungen im Hinterland von NO Brasilien durchgeführt. Es zeigt sich, dass sich die durchschnittliche Landtemperatur gleich der Oberflächenwassertemperatur verhält und im Gegensatz zu den Phasen von H6 bis H2 dem antarktischen Erwärmungstrend ab 17 ka vor heute folgt. Weiterhin konnte gezeigt werden, dass durch die südwärts Verlagerung der ITCZ während H1 und der YD die Niederschläge in NO Brasilen intensiviert wurden, was eine Ausbreitung der Flüsse und Änderung der Erosionsgebiete zur Folge hatte.
Resumo:
Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.
Resumo:
Authigenic phosphatic laminites enclosed in phosphorite crusts from the shelf off Peru (10°01' S and 10°24' S) consist of carbonate fluorapatite layers, which contain abundant sulfide minerals including pyrite (FeS2) and sphalerite (ZnS). Low d34Spyrite values (average -28.8 per mill) agree with bacterial sulfate reduction and subsequent pyrite formation. Stable sulfur isotopic compositions of sulfate bound in carbonate fluorapatite are lower than that of sulfate from ambient sea water, suggesting bacterial reoxidation of sulfide by sulfide-oxidizing bacteria. The release of phosphorus and subsequent formation of the autochthonous phosphatic laminites are apparently caused by the activity of sulfate-reducing bacteria and associated sulfide-oxidizing bacteria. Following an extraction-phosphorite dissolution-extraction procedure, molecular fossils of sulfate-reducing bacteria (mono-O-alkyl glycerol ethers, di-O-alkyl glycerol ethers, as well as the short-chain branched fatty acids i/ai-C15:0, i/ai-C17:0 and 10MeC16:0) are found to be among the most abundant compounds. The fact that these molecular fossils of sulfate-reducing bacteria are distinctly more abundant after dissolution of the phosphatic laminite reveals that the lipids are tightly bound to the mineral lattice of carbonate fluorapatite. Moreover, compared with the autochthonous laminite, molecular fossils of sulfate-reducing bacteria are: (1) significantly less abundant and (2) not as tightly bound to the mineral lattice in the other, allochthonous facies of the Peruvian crusts consisting of phosphatic coated grains. These observations confirm the importance of sulfate-reducing bacteria in the formation of the phosphatic laminite. Model calculations highlight that organic matter degradation by sulfate-reducing bacteria has the potential to liberate sufficient phosphorus for phosphogenesis.
Resumo:
The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3-4 °C. Yet, current reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this time. This stability has been used to suggest that tropical sea-surface temperatures are controlled by some sort of thermostat-like regulation. Here we reconstruct sea surface temperatures in the South China Sea, Caribbean Sea and western equatorial Pacific Ocean for the past five million years, using a combination of the Mg/Ca, TEXH86-and Uk'37 surface temperature proxies. Our data indicate that during the period of Pliocene warmth from about 5 to 2.6 million years ago, the western Pacific and western Atlantic warm pools were about 2 °C warmer than today. We suggest that the apparent lack of warming seen in the previous reconstructions was an artefact of low seawater Mg/Ca ratios in the Pliocene oceans. Taking this bias into account, our data indicate that tropical sea surface temperatures did change in conjunction with global mean temperatures. We therefore conclude that the temperature of the warm pools of the equatorial oceans during the Pliocene was not limited by a thermostat-like mechanism.
Resumo:
The Cariaco Basin, a silled, permanently anoxic basin on the continental shelf of Venezuela with a dynamic chemocline (-240-350 m), has been subject of > 20 years of oceanographic observation and sediment trap studies. We evaluated UK'37 and the TEX86 temperature proxies using sinking particles collected in shallow sediment trap samples at 275 m (Trap A) and 455 m (Trap B) (within and below the chemocline). The organic geochemical temperature proxies, UK'37. (based on coccolithophorid alkenone lipids) and TEX86 (based on archaeal glycerol dialkyl glycerol tetraether (GDGT) lipids), use observed relationships between the ratio of specific lipids and measured sea surface temperature to hindcast past sea surface temperatures. In this study, both UK'37 and TEX86 temperature proxies record seasonal temperature variations, including the cooling associated with upwelling events. UK'37-based temperatures are colder than measured sea surface temperatures, and better correlated temperature at the chlorophyll maximum. In sediment trap material collected below the chemocline (Trap B), UK'37 values are higher than those in Trap A. Warmer subchemocline UK'37 based temperatures may be related to autooxidation of sinking particles, either by small amounts of available oxygen or by alternate electron acceptors concentrated in the biologically dynamic chemocline (e.g. intermediate sulfur compounds). The absolute flux weighted TEX86 temperature values measured in sinking particles from Trap A match the measured SST well. The differences in the TEX86 values between Traps A and B are small and reflect less impact of degradation. Overall, the TEX86 temperatures in sinking particles in the Cariaco Basin reflect annual SST.
Resumo:
During IODP Expedition 310 (Tahiti Sea Level), drowned Pleistocene-Holocene barrier-reef terraces were drilled on the slope of the volcanic island. The deglacial reef succession typically consists of a coral framework encrusted by coralline algae and later by microbialites; the latter make up < 80% of the rock volume. Lipid biomarkers were analyzed in order to identify organisms involved in reef-microbialite formation at Tahiti, as the genesis of deglacial microbialites and the conditions favoring their formation are not fully understood. Sterols plus saturated and monounsaturated short-chain fatty acids predominantly derived from both marine primary producers (algae) and bacteria comprise 44 wt% of all lipids on average, whereas long-chain fatty acids and long-chain alcohols derived from higher land plants represent an average of only 24 wt%. Bacterially derived mono-O-alkyl glycerol ethers (MAGEs) and branched fatty acids (10-Me-C16:0; iso- and anteiso-C15:0 and -C17:0) are exceptionally abundant in the microbial carbonates (average, 19 wt%) and represent biomarkers of intermediate-to-high specificity for sulfate-reducing bacteria. Both are relatively enriched in 13C compared to eukaryotic lipids. No lipid biomarkers indicative of cyanobacteria were preserved in the microbialites. The abundances of Al, Si, Fe, Mn, Ba, pyroxene, plagioclase, and magnetite reflect strong terrigenous influx with Tahitian basalt as the major source. Chemical weathering of the basalt most likely elevated nutrient levels in the reefs and this fertilization led to an increase in primary production and organic matter formation, boosting heterotrophic sulfate reduction. Based on the observed biomarker patterns, sulfate-reducing bacteria were apparently involved in the formation of microbialites in the coral reefs off Tahiti during the last deglaciation.
Resumo:
Reconstructing ocean temperature values is a major target in paleoceanography and climate research. However, most temperature proxies are organism-based and thus suffer from an "ecological bias". Multiproxy approaches can potentially overcome this bias but typically require more investment in time and resources, while being susceptible to errors induced by sample preparation steps necessary before analysis. Three lipid-based temperature proxies are widely used: UK'37 (based on long chain alkenones from phytoplanktonic haptophytes), TEX86 [based on glycerol dialkyl glycerol tetraethers (GDGTs) from pelagic archaea] and LDI (based on long chain diols from phytoplanktonic eustigmatophytes). So far, separate analytical methods, including gas chromatography (GC) and liquid chromatography (LC), have been used to determine these proxies. Here we present a sensitive method for determining all three in a single normal phase high performance LC-atmospheric pressure chemical ionization mass spectrometry (NP-HPLC-APCI-MS) analysis. Each of the long chain alkenones and long chain diols was separated and unambiguously identified from the accurate masses and characteristic fragmentation during multiple stage MS analysis (MS2). Comparison of conventional GC and HPLC-MS methods showed similar results for UK'37 and LDI, respectively, using diverse environmental samples and an Emiliania huxleyi culture. Including the three sea surface temperature (SST) proxies; the NP-HPLC-APCI-MS method in fact allows simultaneous determination of nine paleoenvironmental proxies. The extent to which the ecology of the source organisms (ecological bias) influences lipid composition and thereby the reconstructed temperature values was demonstrated by applying the new method to a sediment core from the Sea of Marmara, covering the last 21 kyr BP. Reconstructed SST values differed considerably between the proxies for the Last Glacial Maximum (LGM) and the period of Sapropel S1 formation at ca. 10 kyr BP, whereas the trends during the late Holocene were similar. Changes in the composition of alkenone-producing species at the transition from the LGM to the Bølling/Allerød (B/A) were inferred from unreasonably high UK'37-derived SST values (ca. 20 °C) during the LGM. We ascribe discrepancies between the reconstructed temperature records during S1 deposition to habitat change, e.g. a different depth due to changes in nutrient availability.
Resumo:
Gas hydrates represent one of the largest pools of readily exchangeable carbon on Earth's surface. Releases of the greenhouse gas methane from hydrates are proposed to be responsible for climate change at numerous events in geological history. Many of these inferred events, however, were based on carbonate carbon isotopes which are susceptible to diagenetic alterations. Here we propose a molecular fossil proxy, i.e., the "Methane Index (MI)", to detect and document the destabilization and dissociation of marine gas hydrates. MI consists of the relative distribution of glycerol dibiphytanyl glycerol tetraethers (GDGTs), the core membrane lipids of archaea. The rational behind MI is that in hydrate-impacted environments, the pool of archaeal tetraether lipids is dominated by GDGT-1, -2 and -3 due to the large contribution of signals from the methanotrophic archaeal community. Our study in the Gulf of Mexico cold-seep sediments demonstrates a correlation between MI and the compound-specific carbon isotope of GDGTs, which is strong evidence supporting the MI-methane consumption relationship. Preliminary applications of MI in a number of hydrate-impacted and/or methane-rich environments show diagnostic MI values, corroborating the idea that MI may serve as a robust indicator for hydrate dissociation that is useful for studies of global carbon cycling and paleoclimate change.
Resumo:
Analysis of sediments deposited at different latitudes around the world during the Palaeocene-Eocene Thermal Maximum (PETM; ~56 Ma) have revealed a globally profound warming phase, regionally varying from 5-8 °C. Such records from Europe have not yet been obtained. We studied the variations in sea surface and continental mean annual air temperatures (SST and MAT, respectively) and the distribution patterns and stable carbon isotopes of higher plant derived n-alkanes in two proximal PETM sections (Fur and Store Bælt, Denmark) from the epicontinental North Sea Basin. A negative carbon isotope excursion (CIE) of 4-7 per mil was recorded in land plant derived n-alkanes, similar to what has been observed for other PETM sections. However, differences observed between the two proximal sites suggest that local factors, such as regional vegetation and precipitation patterns, also influenced the CIE. The presence of S-bound isorenieratene derivatives at the onset of the PETM and increased organic carbon contents points to a rapid shift in depositional environment; from well oxygenated to anoxic and sulfidic. These euxinic conditions are comparable with those during the PETM in the Arctic Ocean. SSTs inferred from TEX86 show relatively low temperatures followed by an increase of ~7 °C across the PETM. At the Fur section, a remarkably similar temperature record was obtained for MAT using the MBT'/CBT proxy. However, the MAT record of the Store Bælt section did not reveal this warming.
Resumo:
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids produced by soil bacteria and occur in near coastal marine sediments as a result of soil organic matter input. Their abundance relative to marine-derived crenarchaeol, quantified in the BIT index, generally decreases offshore. However, in distal marine sediments, low relative amounts of brGDGTs can often still be observed. Sedimentary in situ production as well as dust input have been suggested as potential, though as yet not well constrained, sources. In this study brGDGT distributions in dust were examined and compared with those in distal marine sediments. Dust was sampled along the equatorial West African coast and brGDGTs were detected in most of the samples, albeit in low abundance. Their degree of methylation and cyclisation, expressed in the MBT' (methylation index of branched tetraethers) and DC (degree of cyclisation) indices, respectively, were comparable with those for African soils, their presumed source. Comparison of DC index values for brGDGTS in global soils, Congo deep-sea river fan sediments and dust with those of distal marine sediments clearly showed, however, that distal marine sediments had significantly higher values. This distinctive distribution is suggestive of sedimentary in situ production as a source of brGDGTs in marine sediments, rather than dust input. The presence of in situ produced brGDGTs in marine sediments means that caution should be exercised when applying the MBT'-CBT palaeothermometer to sediments with low BIT index values, i.e. < 0.1, based on our dataset.
Resumo:
The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) highlight the impact of recent atmospheric (Steig et al., 2009, doi:10.1038/nature07669) and oceanic warming (Gille, 2002, doi:10.1126/science.1065863) on the cryosphere. Observations (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) and models (Pollard and DeConto, 2009, doi:10.1038/nature07809) suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000?years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX86 sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations (Huybers and Denton, 2008, doi:10.1038/ngeo311). On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability (Mayewski et al., 2004, doi:10.1016/j.yqres.2004.07.001). Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions (Moreno et al., 2010, doi:10.1130/G30962.1) and El Niño/Southern Oscillation variability (Conroy et al., 2008, doi:10.1016/j.quascirev.2008.02.015) indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula (Yuan et al., 2004, doi:10.1017/S0954102004002238) strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling (Moreno et al., 2010, doi:10.1130/G30962.1; Anderson et al., 2009, doi:10.1126/science.1167441).