963 resultados para Dinoflagellates, calcareous, wall thickness
Resumo:
The interplay between robotics and neuromechanics facilitates discoveries in both fields: nature provides roboticists with design ideas, while robotics research elucidates critical features that confer performance advantages to biological systems. Here, we explore a system particularly well suited to exploit the synergies between biology and robotics: high-speed antenna-based wall following of the American cockroach (Periplaneta americana). Our approach integrates mathematical and hardware modeling with behavioral and neurophysiological experiments. Specifically, we corroborate a prediction from a previously reported wall-following template - the simplest model that captures a behavior - that a cockroach antenna-based controller requires the rate of approach to a wall in addition to distance, e.g., in the form of a proportional-derivative (PD) controller. Neurophysiological experiments reveal that important features of the wall-following controller emerge at the earliest stages of sensory processing, namely in the antennal nerve. Furthermore, we embed the template in a robotic platform outfitted with a bio-inspired antenna. Using this system, we successfully test specific PD gains (up to a scale) fitted to the cockroach behavioral data in a "real-world" setting, lending further credence to the surprisingly simple notion that a cockroach might implement a PD controller for wall following. Finally, we embed the template in a simulated lateral-leg-spring (LLS) model using the center of pressure as the control input. Importantly, the same PD gains fitted to cockroach behavior also stabilize wall following for the LLS model. © 2008 IEEE.
Resumo:
We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2012 OSA.
Resumo:
Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 ± 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 ± 0:79 mm. © 2013 SPIE.
Resumo:
We study the spectral characteristics of bovine serum albumin (BSA) protein conjugated single-wall carbon nanotubes (SWNTs), and quantify their uptake by macrophages. The binding of BSA onto the SWNT surface is found to change the protein structure and to increase the doping of the nanotubes. The G-band Raman intensity follows a well-defined power law for SWNT concentrations of up to 33 μg ml-1 in aqueous solutions. Subsequently, in vitro experiments demonstrate that incubation of BSA-SWNT complexes with macrophages affects neither the cellular growth nor the cellular viability over multiple cell generations. Using wide spot Raman spectroscopy as a fast, non-destructive method for statistical quantification, we observe that macrophages effectively uptake BSA-SWNT complexes, with the average number of nanotubes internalized per cell remaining relatively constant over consecutive cell generations. The number of internalized SWNTs is found to be ∼30 × 106 SWNTs/cell for a 60 mm-2 seeding density and ∼100 × 10 6 SWNTs/cell for a 200 mm-2 seeding density. Our results show that BSA-functionalized SWNTs are an efficient molecular transport system with low cytotoxicity maintained over multiple cell generations. © 2013 IOP Publishing Ltd.
Resumo:
There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ=400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J. Fluid Mech.). Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows.
Resumo:
The purpose of this thesis is to give answer to the question: why do riblets stop working for a certain size? Riblets are small surface grooves aligned in the mean direction of an overlying turbulent flow, designed specifically to reduce the friction between the flow and the surface. They were inspired by biological surfaces, like the oriented denticles in the skin of fastswimming sharks, and were the focus of a significant amount of research in the late eighties and nineties. Although it was found that the drag reduction depends on the riblet size scaled in wall units, the physical mechanisms implicated have not been completely understood up to now. It has been explained how riblets of vanishing size interact with the turbulent flow, producing a change in the drag proportional to their size, but that is not the regime of practical interest. The optimum performance is achieved for larger sizes, once that linear behavior has broken down, but before riblets begin adopting the character of regular roughness and increasing drag. This regime, which is the most relevant from a technological perspective, was precisely the less understood, so we have focused on it. Our efforts have followed three basic directions. First, we have re-assessed the available experimental data, seeking to identify common characteristics in the optimum regime across the different existing riblet geometries. This study has led to the proposal of a new length scale, the square root of the groove crosssection, to substitute the traditional peak-to-peak spacing. Scaling the riblet dimension with this length, the size of breakdown of the linear behavior becomes roughly universal. This suggests that the onset of the breakdown is related to a certain, fixed value of the cross-section of the groove. Second, we have conducted a set of direct numerical simulations of the turbulent flow over riblets, for sizes spanning the full drag reduction range. We have thus been able to reproduce the gradual transition between the different regimes. The spectral analysis of the flows has proven particularly fruitful, since it has made possible to identify spanwise rollers immediately above the riblets, which begin to appear when the riblet size is close to the optimum. This is a quite surprising feature of the flow, not because of the uniqueness of the phenomenon, which had been reported before for other types of complex and porous surfaces, but because most previous studies had focused on the detail of the flow above each riblet as a unit. Our novel approach has provided the adequate tools to capture coherent structures with an extended spanwise support, which interact with the riblets not individually, but collectively. We have also proven that those spanwise structures are responsible for the increase in drag past the viscous breakdown. Finally, we have analyzed the stability of the flow with a simplified model that connects the appearance of rollers to a Kelvin–Helmholtz-like instability, as is the case also for the flow over plant canopies and porous surfaces. In spite of the model emulating the presence of riblets only in an averaged, general fashion, it succeeds to capture the essential attributes of the breakdown, and provides a theoretical justification for the scaling with the groove cross-section.
Resumo:
We examine the effects of varying the tunnel width to height ratio on the shock boundary layer interac-tion of an incident oblique shock with a turbulent boundary layer. The computational domain is a simpli-fied representation of typical wind tunnel experiments; the top wall of the tunnel is not modeled; only the flow conditions imposed by the shock are modeled on the top of the computational domain. A hy-pothesis of the expected effect of width to height ratio is presented and tested computationally. All flows are found to be three dimensional for the single shock strength range of width to height ratios considered. The effect of tunnel width is a function of the boundary layer thickness which decreases the effective width.
Resumo:
One-color transient reflectivity measurements are carried out on two different samples of vertically aligned single-wall carbon nanotube bundles and compared with the response recently published on unaligned bundles. The negative sign of the optical response for both samples indicates that the free electron character revealed on unaligned bundles is only due to the intertube interactions favored by the tube bending. Neither the presence of bundles nor the existence of structural defects in aligned bundles is able to induce a free-electron like behavior of the photoexcited carriers. This result is also confirmed by the presence of non-linear excitonic effects in the transient response of the aligned bundles. © 2013 Elsevier B.V.