981 resultados para Diffusion measurements
Resumo:
Fluid diffusion in glassy polymers proceeds in ways that are not explained by the standard diffusion model. Although the reasons for the anomalous effects are not known, much of the observed behavior is attributed to the long times that polymers below their glass transition temperature take to adjust to changes in their condition. The slow internal relaxations of the polymer chains ensure that the material properties are history-dependent, and also allow both local inhomogeneities and differential swelling to occur. Two models are developed in this thesis with the intent of accounting for these effects in the diffusion process.
In Part I, a model is developed to account for both the history dependence of the glassy polymer, and the dual sorption which occurs when gas molecules are immobilized by the local heterogeneities. A preliminary study of a special case of this model is conducted, showing the existence of travelling wave solutions and using perturbation techniques to investigate the effect of generalized diffusion mechanisms on their form. An integral averaging method is used to estimate the penetrant front position.
In Part II, a model is developed for particle diffusion along with displacements in isotropic viscoelastic materials. The nonlinear dependence of the materials on the fluid concentration is taken into account, while pure displacements are assumed to remain in the range of linear viscoelasticity. A fairly general model is obtained for three-dimensional irrotational movements, with the development of the model being based on the assumptions of irreversible thermodynamics. With the help of some dimensional analysis, this model is simplified to a version which is proposed to be studied for Case II behavior.
Resumo:
A theoretical model is proposed to describe the microscopic processes involved in the ablation in fused silica induced by femtosecond-laser pulse. Conduction-band electron (CBE) can absorb laser energy, the rate is calculated by quantum mechanical method and classical method. CBE is produced via photoionization (PI) and impact ionization (II). The PI and II rates are calculated by using the Keldysh theory and double-flux model, respectively. Besides the CBE production, we investigate laser energy deposition and its distribution. The equation of energy diffusion in physical space is resolved numerically. Taking energy density E-dep=54 kJ/cm(3) as the criterion, we calculate damage threshold, ablation depth, and ablation volumes. It is found that if energy diffusion is considered, energy density near sample surface is reduced to 1/10, damage threshold is enhanced more than 30%, ablation depth is increased by a factor of 10. Our theoretical results agree well with experimental measurements. Several ultrafast phenomena in fused silica are also discussed. (C) 2004 American Institute of Physics.
Resumo:
The population of eastern oyster, C. virginica, has declined over the last century on most areas of the east and gulf coasts. North Carolina’s restoration efforts depend on the construction of subtidal oyster reefs to be used as broodstock sanctuaries in Pamlico Sound, NC. Successful restoration of the oyster population requires several thriving reefs connected as a meta-population. C. virginica has a 2-3 week larval stage, during which it gradually settles through the water column. Larvae that can travel from one reef to another during that stage form the basis of a meta-population. (PDF contains 3 pages)
Resumo:
We have investigated the damage for ZrO2/SiO2 800 nm 45 degrees high-reflection mirror with femtosecond pulses. The damage morphologies and the evolution of ablation crater depths with laser fluences are dramatically different from that with pulse longer than a few tens of picoseconds. The ablation in multilayers occurs layer by layer, and not continuously as in the case of bulk single crystalline or amorphous materials. The weak point in damage is the interface between two layers. We also report its single-short damage thresholds for pulse durations ranging from 50 to 900 fs, which departs from the diffusion-dominated tau(1/2)(p) scaling. A developed avalanche model, including the production of conduction band electrons (CBE) and laser energy deposition, is applied to study the damage mechanisms. The theoretical results agree well with our measurements. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Part I
Particles are a key feature of planetary atmospheres. On Earth they represent the greatest source of uncertainty in the global energy budget. This uncertainty can be addressed by making more measurement, by improving the theoretical analysis of measurements, and by better modeling basic particle nucleation and initial particle growth within an atmosphere. This work will focus on the latter two methods of improvement.
Uncertainty in measurements is largely due to particle charging. Accurate descriptions of particle charging are challenging because one deals with particles in a gas as opposed to a vacuum, so different length scales come into play. Previous studies have considered the effects of transition between the continuum and kinetic regime and the effects of two and three body interactions within the kinetic regime. These studies, however, use questionable assumptions about the charging process which resulted in skewed observations, and bias in the proposed dynamics of aerosol particles. These assumptions affect both the ions and particles in the system. Ions are assumed to be point monopoles that have a single characteristic speed rather than follow a distribution. Particles are assumed to be perfect conductors that have up to five elementary charges on them. The effects of three body interaction, ion-molecule-particle, are also overestimated. By revising this theory so that the basic physical attributes of both ions and particles and their interactions are better represented, we are able to make more accurate predictions of particle charging in both the kinetic and continuum regimes.
The same revised theory that was used above to model ion charging can also be applied to the flux of neutral vapor phase molecules to a particle or initial cluster. Using these results we can model the vapor flux to a neutral or charged particle due to diffusion and electromagnetic interactions. In many classical theories currently applied to these models, the finite size of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an “enhancement factor” to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth.
Part II
Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, \lambda_{R}, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.
Resumo:
We present an entanglement purification protocol for photonic mixed entangled states based on the two-mode polarization nondemolition parity detectors. Without the use of the controlled-NOT (CNOT) operations, the efficiency of our protocol can nearly approach that of the CNOT protocol. The total successful probability of our protocol can be nearly enhanced to the quantity twice as large as that of the linear-optics-based protocol. Besides, our protocol adopts common photon detectors rather than the sophisticated single-photon detectors required in the linear-optics-based protocol.
Resumo:
We analyse further the entanglement purification protocol proposed by Feng et al. (Phys. Lett. A 271 (2000) 44) in the case of imperfect local operations and measurements. It is found that this protocol allows of higher error threshold. Compared with the standard entanglement purification proposed by Bennett et al. [Phys. Rev. Lett. 76 (1996) 722], it turns out that this protocol is remarkably robust against the influences of imperfect local operations and measurements.
Resumo:
A total of 61 specimens of Heterotis niloticus were evaluated by linear regression and correlation. The specimens had mean standard length of 27.09 plus or minus 4.73cm, total length of 33-49cm, mean weight of 2445,108.3g, mean snout length of 48 plus or minus 0.86cm, mean eye diameter of 1.30 plus or minus 0.15cm, mean head length of 6.29 plus or minus 1.75cm. There was a strong relationship between the length and the weight, the eye diameter and the standard length, snout length and the standard length, head length and the standard length, snout length and the weight, head length and the weight (P<0.05). But the correlation of the eye diameters and the weight was insignificant (P>0.05). The growth pattern analysis depicts that the growth was negatively allometric with a b value of 1.16
Resumo:
Este trabajo se encuentra bajo la licencia Creative Commons Attribution 3.0.