902 resultados para Differential and Algebraic Geometry
Resumo:
Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.
The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.
The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.
Resumo:
In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.
Resumo:
This thesis focuses mainly on linear algebraic aspects of combinatorics. Let N_t(H) be an incidence matrix with edges versus all subhypergraphs of a complete hypergraph that are isomorphic to H. Richard M. Wilson and the author find the general formula for the Smith normal form or diagonal form of N_t(H) for all simple graphs H and for a very general class of t-uniform hypergraphs H.
As a continuation, the author determines the formula for diagonal forms of integer matrices obtained from other combinatorial structures, including incidence matrices for subgraphs of a complete bipartite graph and inclusion matrices for multisets.
One major application of diagonal forms is in zero-sum Ramsey theory. For instance, Caro's results in zero-sum Ramsey numbers for graphs and Caro and Yuster's results in zero-sum bipartite Ramsey numbers can be reproduced. These results are further generalized to t-uniform hypergraphs. Other applications include signed bipartite graph designs.
Research results on some other problems are also included in this thesis, such as a Ramsey-type problem on equipartitions, Hartman's conjecture on large sets of designs and a matroid theory problem proposed by Welsh.
Resumo:
Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.
We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.
We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.
Resumo:
Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.
For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.
For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.
For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.