929 resultados para Difference (Psychology)
Resumo:
Background: Previous research suggests that the phenotype associated with Asperger's syndrome (AS) includes difficulties in understanding the mental states of others, leading to difficulties in social communication and social relationships. It has also been suggested that the first-degree relatives of those with AS can demonstrate similar difficulties, albeit to a lesser extent. This study examined 'theory of mind' (ToM) abilities in the siblings of children with AS relative to a matched control group. Method: 2 7 children who had a sibling with AS were administered the children's version of the 'Eyes Test'(Baron-Cohen, Wheelwright, Stone, & Rutherford, 1999). The control group consisted of 27 children matched for age, sex, and a measure of verbal comprehension, and who did not have a family history of AS/autism. Results: A significant difference was found between the groups on the Eyes Test, the 'siblings' group showing a poorer performance on this measure of social cognition. The difference was more pronounced among female siblings. Discussion: These results are discussed in terms of the familial distribution of a neuro-cognitive profile associated with AS, which confers varying degrees of social handicap amongst first-degree relatives. The implication of this finding with regard to the autism/AS phenotype is explored, with some discussion of why this neuro-cognitive profile (in combination with corresponding strengths) may have an evolutionary imperative.
Resumo:
Abu-Saris and DeVault proposed two open problems about the difference equation x(n+1) = a(n)x(n)/x(n-1), n = 0, 1, 2,..., where a(n) not equal 0 for n = 0, 1, 2..., x(-1) not equal 0, x(0) not equal 0. In this paper we provide solutions to the two open problems. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we study the oscillating property of positive solutions and the global asymptotic stability of the unique equilibrium of the two rational difference equations [GRAPHICS] and [GRAPHICS] where a is a nonnegative constant. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we study the behavior of the positive solutions of the system of two difference equations [GRAPHICS] where p >= 1, r >= 1, s >= 1, A >= 0, and x(1-r), x(2-r),..., x(0), y(1-max) {p.s},..., y(0) are positive real numbers. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A flux-difference splitting method is presented for the inviscid terms of the compressible flow equations for chemical non-equilibrium gases
Resumo:
A numerical scheme is presented for the solution of the Euler equations of compressible flow of a real gas in a single spatial coordinate. This includes flow in a duct of variable cross-section, as well as flow with slab, cylindrical or spherical symmetry, as well as the case of an ideal gas, and can be useful when testing codes for the two-dimensional equations governing compressible flow of a real gas. The resulting scheme requires an average of the flow variables across the interface between cells, and this average is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual “square root” averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and for a number of equations of state. The results compare favourably with the results from other schemes.
Resumo:
An efficient finite difference scheme is presented for the inviscid terms of the three-dimensional, compressible flow equations for chemical non-equilibrium gases. This scheme represents an extension and an improvement of one proposed by the author, and includes operator splitting.
Resumo:
We present a finite difference scheme, with the TVD (total variation diminishing) property, for scalar conservation laws. The scheme applies to non-uniform meshes, allowing for variable mesh spacing, and is without upstream weighting. When applied to systems of conservation laws, no scalar decomposition is required, nor are any artificial tuning parameters, and this leads to an efficient, robust algorithm.
Resumo:
A finite difference scheme is presented for the inviscid terms of the equations of compressible fluid dynamics with general non-equilibrium chemistry and internal energy.
Resumo:
A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, compressible flow of real gases. The scheme incorparates numerical characteristic decomposition, is shock-capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.