878 resultados para Diagnosis support systems
Resumo:
Weather, climate, water and related environmental conditions, including air quality, all have profound effects on cities. A growing importance is being attached to understanding and predicting atmospheric conditions and their interactions with other components of the Earth System in cities, at multiple scales. We highlight the need for: (1) development of high-resolution coupled environmental prediction models that include realistic city-specific processes, boundary conditions and fluxes; (2) enhanced observational systems to support (force, constrain, evaluate) these models to provide high quality forecasts for new urban services; (3) provision of meteorological and related environmental variables to aid protection of human health and the environment; (4) new targeted and customized delivery platforms using modern communication techniques, developed with users to ensure that services, advice and warnings result in appropriate action; and (5) development of new skill and capacity to make best use of technologies to deliver new services in complex, challenging and evolving city environments. We highlight the importance of a coordinated and strategic approach that draws on, but does not replicate, past work to maximize benefits to stakeholders.
Resumo:
This paper reviews the literature concerning the practice of using Online Analytical Processing (OLAP) systems to recall information stored by Online Transactional Processing (OLTP) systems. Such a review provides a basis for discussion on the need for the information that are recalled through OLAP systems to maintain the contexts of transactions with the data captured by the respective OLTP system. The paper observes an industry trend involving the use of OLTP systems to process information into data, which are then stored in databases without the business rules that were used to process information and data stored in OLTP databases without associated business rules. This includes the necessitation of a practice, whereby, sets of business rules are used to extract, cleanse, transform and load data from disparate OLTP systems into OLAP databases to support the requirements for complex reporting and analytics. These sets of business rules are usually not the same as business rules used to capture data in particular OLTP systems. The paper argues that, differences between the business rules used to interpret these same data sets, risk gaps in semantics between information captured by OLTP systems and information recalled through OLAP systems. Literature concerning the modeling of business transaction information as facts with context as part of the modelling of information systems were reviewed to identify design trends that are contributing to the design quality of OLTP and OLAP systems. The paper then argues that; the quality of OLTP and OLAP systems design has a critical dependency on the capture of facts with associated context, encoding facts with contexts into data with business rules, storage and sourcing of data with business rules, decoding data with business rules into the facts with the context and recall of facts with associated contexts. The paper proposes UBIRQ, a design model to aid the co-design of data with business rules storage for OLTP and OLAP purposes. The proposed design model provides the opportunity for the implementation and use of multi-purpose databases, and business rules stores for OLTP and OLAP systems. Such implementations would enable the use of OLTP systems to record and store data with executions of business rules, which will allow for the use of OLTP and OLAP systems to query data with business rules used to capture the data. Thereby ensuring information recalled via OLAP systems preserves the contexts of transactions as per the data captured by the respective OLTP system.
Resumo:
Background Depression and anxiety are common after diagnosis of breast cancer. We examined to what extent these are recurrences of previous disorder and, controlling for this, whether shame, self-blame and low social support after diagnosis predicted onset of depression and anxiety subsequently. Method Women with primary breast cancer who had been treated surgically self-reported shame, self-blame, social support and emotional distress post-operatively. Psychiatric interview 12 months later identified those with adult lifetime episodes of major depression (MD) or generalized anxiety disorder (GAD) before diagnosis and onset over the subsequent year. Statistical analysis examined predictors of each disorder in that year. Results Of the patients, two-thirds with episodes of MD and 40% with episodes of GAD during the year after diagnosis were experiencing recurrence of previous disorder. Although low social support, self-blame and shame were each associated with both MD and GAD after diagnosis, they did not mediate the relationship of disorder after diagnosis with previous disorder. Low social support, but not shame or self-blame, predicted recurrence after controlling for previous disorder. Conclusions Anxiety and depression during the first year after diagnosis of breast cancer are often the recurrence of previous disorder. In predicting disorder following diagnosis, self-blame and shame are merely markers of previous disorder. Low social support is an independent predictor and therefore may have a causal role.
Resumo:
This paper concerns the innovative use of a blend of systems thinking ideas in the ‘Munro Review of Child Protection’, a high-profile examination of child protection activities in England, conducted for the Department for Education. We go ‘behind the scenes’ to describe the OR methodologies and processes employed. The circumstances that led to the Review are outlined. Three specific contributions that systems thinking made to the Review are then described. First, the systems-based analysis and visualisation of how a ‘compliance culture’ had grown up. Second the creation of a large, complex systems map of current operations and the effects of past policies on them. Third, how the map gave shape to the range of issues the Review addressed and acted as an organising framework for the systemically coherent set of recommendations made. The paper closes with an outline of the main implementation steps taken so far to create a child protection system with the critically reflective properties of a learning organisation, and methodological reflections on the benefits of systems thinking to support organisational analysis.
An LDA and probability-based classifier for the diagnosis of Alzheimer's Disease from structural MRI
Resumo:
In this paper a custom classification algorithm based on linear discriminant analysis and probability-based weights is implemented and applied to the hippocampus measurements of structural magnetic resonance images from healthy subjects and Alzheimer’s Disease sufferers; and then attempts to diagnose them as accurately as possible. The classifier works by classifying each measurement of a hippocampal volume as healthy controlsized or Alzheimer’s Disease-sized, these new features are then weighted and used to classify the subject as a healthy control or suffering from Alzheimer’s Disease. The preliminary results obtained reach an accuracy of 85.8% and this is a similar accuracy to state-of-the-art methods such as a Naive Bayes classifier and a Support Vector Machine. An advantage of the method proposed in this paper over the aforementioned state of the art classifiers is the descriptive ability of the classifications it produces. The descriptive model can be of great help to aid a doctor in the diagnosis of Alzheimer’s Disease, or even further the understand of how Alzheimer’s Disease affects the hippocampus.
Resumo:
Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist. As numerical weather prediction models continue to improve, operational centres are increasingly using the meteorological output from these to drive hydrological models, creating hydrometeorological systems capable of forecasting river flow and flood events at much longer lead times than has previously been possible. Furthermore, developments in, for example, modelling capabilities, data and resources in recent years have made it possible to produce global scale flood forecasting systems. In this paper, the current state of operational large scale flood forecasting is discussed, including probabilistic forecasting of floods using ensemble prediction systems. Six state-of-the-art operational large scale flood forecasting systems are reviewed, describing similarities and differences in their approaches to forecasting floods at the global and continental scale. Currently, operational systems have the capability to produce coarse-scale discharge forecasts in the medium-range and disseminate forecasts and, in some cases, early warning products, in real time across the globe, in support of national forecasting capabilities. With improvements in seasonal weather forecasting, future advances may include more seamless hydrological forecasting at the global scale, alongside a move towards multi-model forecasts and grand ensemble techniques, responding to the requirement of developing multi-hazard early warning systems for disaster risk reduction.
Resumo:
Smart grid research has tended to be compartmentalised, with notable contributions from economics, electrical engineering and science and technology studies. However, there is an acknowledged and growing need for an integrated systems approach to the evaluation of smart grid initiatives. The capacity to simulate and explore smart grid possibilities on various scales is key to such an integrated approach but existing models – even if multidisciplinary – tend to have a limited focus. This paper describes an innovative and flexible framework that has been developed to facilitate the simulation of various smart grid scenarios and the interconnected social, technical and economic networks from a complex systems perspective. The architecture is described and related to realised examples of its use, both to model the electricity system as it is today and to model futures that have been envisioned in the literature. Potential future applications of the framework are explored, along with its utility as an analytic and decision support tool for smart grid stakeholders.
Resumo:
Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging due to reinforcing feedbacks between multiple drivers. We conducted semi-structured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision-making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. All scenarios showed increased wildfire risk in the event of more droughts. The ‘Hands-off’ scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production. The ‘Fire management’ scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared to the ‘Fire suppression’ scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a ‘boundary object’ to facilitate collaboration and integration of different forms of knowledge and perceptions of fire in the region. This approach has also the potential to support decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.
Resumo:
Mirids (Sahlbergella singularis and Distantiella theobroma) are the most important insect pests affecting cocoa production across West Africa. Understanding the population dynamics of mirids is key to their management, however, the current recommended hand-height assessment method is labour intensive. The objective of the study was to compare recently developed mirid sex pheromone trapping and visual hand-height assessment methods as monitoring tools on cocoa farms and to consider implications for a decision support system. Ten farms from the Eastern and Ashanti regions of Ghana were used for the study. Mirid numbers and damage were assessed fortnightly on twenty trees per farm, using both methods, from January 2012 to April 2013. The mirid population increased rapidly in June, reached a peak in September and began to decline in October. There was a significant linear relationship between numbers of mirids sampled to hand-height and mirid damage. High numbers of male mirids were recorded in pheromone traps between January and April 2012 after which there was a gradual decline. There was a significant inverse relationship between numbers of trapped adult mirids and mirids sampled to hand-height (predominantly nymphs). Higher temperatures and lower relative humidities in the first half of the year were associated with fewer mirids at hand-height but larger numbers of adult males were caught in pheromone traps. The study showed that relying solely on one method is not sufficient to provide accurate information on mirid population dynamics and a combination of the two methods is necessary.
Resumo:
Network diagnosis in Wireless Sensor Networks (WSNs) is a difficult task due to their improvisational nature, invisibility of internal running status, and particularly since the network structure can frequently change due to link failure. To solve this problem, we propose a Mobile Sink (MS) based distributed fault diagnosis algorithm for WSNs. An MS, or mobile fault detector is usually a mobile robot or vehicle equipped with a wireless transceiver that performs the task of a mobile base station while also diagnosing the hardware and software status of deployed network sensors. Our MS mobile fault detector moves through the network area polling each static sensor node to diagnose the hardware and software status of nearby sensor nodes using only single hop communication. Therefore, the fault detection accuracy and functionality of the network is significantly increased. In order to maintain an excellent Quality of Service (QoS), we employ an optimal fault diagnosis tour planning algorithm. In addition to saving energy and time, the tour planning algorithm excludes faulty sensor nodes from the next diagnosis tour. We demonstrate the effectiveness of the proposed algorithms through simulation and real life experimental results.
Resumo:
The progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to the base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.
Resumo:
The objective of this work was to compare two anaerobic reactor conflgurations, a hybrid upflow anaerobic sludge blanket (UASBh) reactor and an anaerobic sequencing batch reactor with immobilised biomass (ASBBR) treating dairy effluents. The reactors were fed with effluent from the milk pasteurisation process (effluent 1-E1) and later with effluent from the same process combined with the one from the cheese manufacturing (effluent 2-E2). The ASBBR reactor showed average organic matter removal efficiency of 95.2% for E1 and 93.5% for E2, while the hybrid UASB reactor showed removal efficiencies of 90.3% and 80.1% respectively.
Resumo:
The Western blot technique is currently the standard detection method for suspected limb girdle muscular dystrophy (LGMD) 2A (calpainopathy). This is the first report in the English literature of the successful application of immunohistochemical techniques to support a diagnosis of LGMD 2A. This approach is straightforward and appears to be reasonably specific. We propose that immunohistochemical methods should be re-evaluated for the screening of undiagnosed patients with suspected LGMD 2A.
Resumo:
We characterized four Brazilian trypanosomes isolated from domestic rats and three from captive nonhuman primates that were morphologically similar to T. lewisi, a considered non-pathogenic species restricted to rodents and transmitted by fleas, despite its potential pathogenicity for infants. These isolates were identified as T. lewisi by barcoding using V7V8 SSU rDNA sequences. In inferred phylogenetic trees, all isolates clustered tightly with reference T. lewisi and T. lewisi-like trypanosomes from Europe, Asia and Africa and despite their high sequence conservation formed a homogeneous clade separate from other species of the subgenus T. (Herpetosoma). With the aim of clearly resolving the relationships between the Brazilian isolates from domestic rats and primates, we compared sequences from more polymorphic ITS rDNA. Results corroborated that isolates from Brazilian rats and monkeys were indeed of the same species and quite close to T. lewisi isolates of humans and rats from different geographical regions. Morphology of the monkey isolates and their behaviour in culture and in experimentally infected rats were also compatible with T. lewisi. However, infection with T. lewisi is rare among monkeys. We have examined more than 200 free-ranging and 160 captive monkeys and found only three infected individuals among the monkeys held in captivity. The findings of this work suggest that proximity of monkeys and infected rats and their exposure to infected fleas may be responsible for the host switching of T. Iewisi from their natural rodent species to primates. This and previous studies reporting T. lewisi in humans suggest that this trypanosome can cause sporadic and opportunistic fleaborne infection in primates. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In 2006 the Route load balancing algorithm was proposed and compared to other techniques aiming at optimizing the process allocation in grid environments. This algorithm schedules tasks of parallel applications considering computer neighborhoods (where the distance is defined by the network latency). Route presents good results for large environments, although there are cases where neighbors do not have an enough computational capacity nor communication system capable of serving the application. In those situations the Route migrates tasks until they stabilize in a grid area with enough resources. This migration may take long time what reduces the overall performance. In order to improve such stabilization time, this paper proposes RouteGA (Route with Genetic Algorithm support) which considers historical information on parallel application behavior and also the computer capacities and load to optimize the scheduling. This information is extracted by using monitors and summarized in a knowledge base used to quantify the occupation of tasks. Afterwards, such information is used to parameterize a genetic algorithm responsible for optimizing the task allocation. Results confirm that RouteGA outperforms the load balancing carried out by the original Route, which had previously outperformed others scheduling algorithms from literature.